|
|
A244549
|
|
Integers n such that for every integer k>0, n*6^k+1 has a divisor in the set { 7, 13, 31, 37, 97 }.
|
|
0
|
|
|
174308, 188299, 702703, 1045848, 1129794, 1615907, 1956746, 2485141, 3162650, 4216218, 4786277, 4800566, 5048170, 6275088, 6778764, 7075837, 7276821, 7549807, 8468524, 8554258, 8851331, 9616447, 9695442, 10039882
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For n > 24 a(n) = a(n-24) + 10124569, the first 24 values are in the data.
When the number a(n) has 4 or 9 as the last digit the number a(n)*6^k-1 is always divisible by 5 and have always a divisor in the set { 7, 13, 31, 37, 97 } for every k.
|
|
LINKS
|
Table of n, a(n) for n=1..24.
|
|
FORMULA
|
For n > 24 a(n) = a(n-24) + 10124569.
|
|
CROSSREFS
|
Cf. A076337, A243969, A244070, A244071, A244072, A244073, A244074, A244076, A244211, A244545.
Sequence in context: A251155 A166264 A205054 * A214172 A247348 A029830
Adjacent sequences: A244546 A244547 A244548 * A244550 A244551 A244552
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Pierre CAMI, Jun 29 2014
|
|
STATUS
|
approved
|
|
|
|