OFFSET
1,1
COMMENTS
Could be called 4-safe primes, or safe primes of order 4, as the safe primes are the primes such that (p-1)/2 is prime.
Obviously a subsequence of the k-safe primes for k < 4 : A005385 (safe primes, k=1), A181841 (supersafe primes, k=2), A247347 (k=3).
a(n) = 119 (mod 120) for all n.
These numbers generate sequences 5-4-3-2-1 in A052126.
LINKS
Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[(p-1)/2]&&PrimeQ[(p-2)/3]&&PrimeQ[(p-3)/ 4&&PrimeQ[(p-4)/ 5], AppendTo[lst, p]], {n, 2*9!}]; lst
PROG
(PARI) isokp(v) = (type(v) == "t_INT") && isprime(v);
lista(nn) = {forprime(p=2, nn, if (isokp((p-1)/2) && isokp((p-2)/3) && isokp((p-3)/4) && isokp((p-4)/5), print1(p, ", ")); ); } \\ Michel Marcus, Sep 15 2014
(Python)
from __future__ import division
from sympy import prime, isprime
A247348_list = [p for p in (5*prime(n)+4 for n in range(1, 10**6)) if not ((p-1) % 2 or (p-2) % 3 or (p-3) % 4) and isprime(p) and isprime((p-1)//2) and isprime((p-2)//3) and isprime((p-3)//4)] # Chai Wah Wu, Sep 18 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Jean-Christophe Hervé, Sep 14 2014
EXTENSIONS
More terms from Michel Marcus, Sep 15 2014
STATUS
approved