login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244548
Palindromes n with nonzero digits such that n +/- the product of digits of n are both palindromes.
0
1, 2, 3, 4, 252, 15451, 25152, 25252, 25352, 25452, 36563, 51415, 52125, 52225, 52325, 52425, 63536, 92529, 1455541, 1545451, 1954591, 2255522, 2525252, 2853582, 2856582, 3354533, 3534353, 4155514, 4453544, 4456544, 4515154, 4543454, 4546454, 5145415, 5225225, 5334335, 5415145
OFFSET
1,2
COMMENTS
These are the palindromes in A244547.
EXAMPLE
252 has all digits > 0. 252 is a palindrome, 252 - 2*5*2 = 232 is a palindrome, and 252 + 2*5*2 = 272 is a palindrome. Thus 252 is a member of this sequence.
PROG
(PARI) rev(n)={r=""; for(i=1, #digits(n), r=concat(Str(digits(n)[i]), r)); return(eval(r))}
for(n=1, 10^7, if(rev(n)==n, dig=digits(n); p=prod(k=1, #dig, dig[k]); if(p!=0, mi=n-p; ma=n+p; if(rev(mi)==mi&&rev(ma)==ma, print1(n, ", ")))))
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Derek Orr, Jun 29 2014
STATUS
approved