login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166264 If the n-th prime is denoted by p(n) then a(j) = frequency with which each distinct value of (Sum of the quadratic non-residues of p(n) - Sum of the quadratic residues of p(n)) / p(n) occurs. 2
174195, 6, 16, 25, 31, 34, 41, 37, 68, 45, 47, 85, 68, 95, 93, 83, 73, 101, 103, 85, 115, 109, 106, 154, 107, 132, 159, 114, 163, 179, 128, 132, 216, 164, 120, 209, 150, 119, 237, 216, 175, 228, 150, 221, 222, 192, 214, 262, 241, 185, 289, 196, 181, 379, 189 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The table below shows a(j) for each distinct value of (Sum of the quadratic non-residues of p(n) - Sum of the quadratic residues of p(n)) / p(n) for 1 <= n <= 348513, with p(348513) = 4999999 (< 5*10^6).
a(1) appears to increase indefinitely, so the static sequence starts at a(2).
j (SQN-SQR)/p(n) a(j)
-- -------------- ------
1 0 174195
2 1 6
3 3 16
4 5 25
5 7 31
6 9 34
7 11 41
8 13 37
9 15 68
10 17 45
11 19 47
12 21 85
13 23 68
14 25 95
15 27 93
16 29 83
17 31 73
18 33 101
19 35 103
20 37 85
21 39 115
22 41 109
23 43 106
24 45 154
25 47 107
26 49 132
27 51 159
28 53 114
29 55 163
30 57 179
31 59 128
32 61 132
33 63 216
34 65 164
35 67 120
36 69 209
37 71 150
38 73 119
39 75 237
40 77 216
41 79 175
42 81 228
43 83 150
44 85 221
45 87 222
46 89 192
47 91 214
48 93 262
49 95 241
50 97 185
51 99 289
52 101 196
53 103 181
54 105 379
55 107 189
56 109 209
57 111 314
58 113 239
LINKS
Christopher Hunt Gribble, Table of n, a(n) for n = 1..1973.
CROSSREFS
Sequence in context: A209813 A034632 A251155 * A205054 A244549 A214172
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 19:01 EST 2024. Contains 370378 sequences. (Running on oeis4.)