%I
%S 174195,6,16,25,31,34,41,37,68,45,47,85,68,95,93,83,73,101,103,85,115,
%T 109,106,154,107,132,159,114,163,179,128,132,216,164,120,209,150,119,
%U 237,216,175,228,150,221,222,192,214,262,241,185,289,196,181,379,189
%N If the n-th prime is denoted by p(n) then a(j) = frequency with which each distinct value of (Sum of the quadratic non-residues of p(n) - Sum of the quadratic residues of p(n)) / p(n) occurs.
%C The table below shows a(j) for each distinct value of (Sum of the quadratic non-residues of p(n) - Sum of the quadratic residues of p(n)) / p(n) for 1 <= n <= 348513, with p(348513) = 4999999 (< 5*10^6).
%C a(1) appears to increase indefinitely, so the static sequence starts at a(2).
%C j (SQN-SQR)/p(n) a(j)
%C -- -------------- ------
%C 1 0 174195
%C 2 1 6
%C 3 3 16
%C 4 5 25
%C 5 7 31
%C 6 9 34
%C 7 11 41
%C 8 13 37
%C 9 15 68
%C 10 17 45
%C 11 19 47
%C 12 21 85
%C 13 23 68
%C 14 25 95
%C 15 27 93
%C 16 29 83
%C 17 31 73
%C 18 33 101
%C 19 35 103
%C 20 37 85
%C 21 39 115
%C 22 41 109
%C 23 43 106
%C 24 45 154
%C 25 47 107
%C 26 49 132
%C 27 51 159
%C 28 53 114
%C 29 55 163
%C 30 57 179
%C 31 59 128
%C 32 61 132
%C 33 63 216
%C 34 65 164
%C 35 67 120
%C 36 69 209
%C 37 71 150
%C 38 73 119
%C 39 75 237
%C 40 77 216
%C 41 79 175
%C 42 81 228
%C 43 83 150
%C 44 85 221
%C 45 87 222
%C 46 89 192
%C 47 91 214
%C 48 93 262
%C 49 95 241
%C 50 97 185
%C 51 99 289
%C 52 101 196
%C 53 103 181
%C 54 105 379
%C 55 107 189
%C 56 109 209
%C 57 111 314
%C 58 113 239
%H Christopher Hunt Gribble, <a href="/A166264/b166264.txt">Table of n, a(n) for n = 1..1973</a>.
%Y Cf. A165951, A165974, A004273.
%K nonn
%O 1,1
%A _Christopher Hunt Gribble_, Oct 10 2009
|