login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244352
a(n) = Pell(n)^3 - Pell(n)^2, where Pell(n) is the n-th Pell number (A000129).
1
0, 0, 4, 100, 1584, 23548, 338100, 4798248, 67750848, 954701400, 13441659268, 189185124940, 2662308356400, 37463104912660, 527155118240244, 7417689205890000, 104375121328998144, 1468671237346368048, 20665783224031936900, 290789699203441908148
OFFSET
0,3
FORMULA
a(n) = A110272(n) - A079291(n).
G.f.: 4*x^2*(1+8*x-4*x^2+3*x^3) / ((1+x)*(1-6*x+x^2)*(1+2*x-x^2)*(1-14*x-x^2)).
a(n) = A045991(A000129(n)). - Michel Marcus, Jun 26 2014
EXAMPLE
a(3) = Pell(3)^3 - Pell(3)^2 = 5^3 - 5^2 = 100.
MATHEMATICA
CoefficientList[Series[4*x^2*(3*x^3-4*x^2+8*x+1) / ((x+1)*(x^2-6*x+1)*(x^2-2*x-1)*(x^2+14*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 26 2014 *)
PROG
(PARI)
pell(n) = round(((1+sqrt(2))^n-(1-sqrt(2))^n)/(2*sqrt(2)))
vector(50, n, pell(n-1)^3-pell(n-1)^2)
(Magma)
Pell:= func< n | n eq 0 select 0 else Evaluate(DicksonSecond(n-1, -1), 2) >;
[Pell(n)^3 - Pell(n)^2: n in [0..40]]; // G. C. Greubel, Aug 20 2022
(SageMath)
def Pell(n): return lucas_number1(n, 2, -1)
[Pell(n)^3 -Pell(n)^2 for n in (0..40)] # G. C. Greubel, Aug 20 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jun 26 2014
STATUS
approved