The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244352 Pell(n)^3 - Pell(n)^2, where Pell(n) is the n-th Pell number (A000129). 1
 0, 0, 4, 100, 1584, 23548, 338100, 4798248, 67750848, 954701400, 13441659268, 189185124940, 2662308356400, 37463104912660, 527155118240244, 7417689205890000, 104375121328998144, 1468671237346368048, 20665783224031936900, 290789699203441908148 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Colin Barker, Table of n, a(n) for n = 0..800 Index entries for linear recurrences with constant coefficients, signature (17,-25,-223,-79,95,-7,-1). FORMULA a(n) = A110272(n) - A079291(n). G.f.: 4*x^2*(3*x^3-4*x^2+8*x+1) / ((x+1)*(x^2-6*x+1)*(x^2-2*x-1)*(x^2+14*x-1)). a(n) = A045991(A000129(n)). - Michel Marcus, Jun 26 2014 EXAMPLE a(3) = Pell(3)^3 - Pell(3)^2 = 5^3 - 5^2 = 100. MATHEMATICA CoefficientList[Series[4*x^2*(3*x^3-4*x^2+8*x+1) / ((x+1)*(x^2-6*x+1)*(x^2-2*x-1)*(x^2+14*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 26 2014 *) PROG (PARI) pell(n) = round(((1+sqrt(2))^n-(1-sqrt(2))^n)/(2*sqrt(2))) vector(50, n, pell(n-1)^3-pell(n-1)^2) CROSSREFS Cf. A000129, A079291, A110272. Sequence in context: A158082 A017090 A029995 * A173987 A052144 A165518 Adjacent sequences:  A244349 A244350 A244351 * A244353 A244354 A244355 KEYWORD nonn,easy AUTHOR Colin Barker, Jun 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 21:02 EDT 2021. Contains 346488 sequences. (Running on oeis4.)