The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244351 Integers n such that for every integer k>0, n*6^k-1 has a divisor in the set { 7, 13, 31, 37, 97 }. 0
 84687, 429127, 508122, 1273238, 1570311, 1656045, 2574762, 2847748, 3048732, 3345805, 3849481, 5076399, 5324003, 5338292, 5908351, 6961919, 7639428, 8167823, 8508662, 8994775, 9078721, 9421866, 9936270, 9950261 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For n > 24 a(n) = a(n-24) + 10124569, the first 24 values are in the data. When the number a(n) has 1 or 6 as the last digit the number  a(n)*6^k-1 is always divisible by 5 and have always a divisor in the set { 7, 13, 31, 37, 97 } for every  k. LINKS FORMULA For n>24 a(n) = a(n-24) + 10124569. CROSSREFS Cf. A076337, A243969, A244070, A244071, A244072, A244073, A244074, A244076, A244211. Sequence in context: A346280 A034604 A202615 * A232704 A205023 A207298 Adjacent sequences:  A244348 A244349 A244350 * A244352 A244353 A244354 KEYWORD nonn AUTHOR Pierre CAMI, Jun 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 2 21:30 EDT 2021. Contains 346429 sequences. (Running on oeis4.)