Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Aug 21 2022 06:37:23
%S 0,0,4,100,1584,23548,338100,4798248,67750848,954701400,13441659268,
%T 189185124940,2662308356400,37463104912660,527155118240244,
%U 7417689205890000,104375121328998144,1468671237346368048,20665783224031936900,290789699203441908148
%N a(n) = Pell(n)^3 - Pell(n)^2, where Pell(n) is the n-th Pell number (A000129).
%H Colin Barker, <a href="/A244352/b244352.txt">Table of n, a(n) for n = 0..800</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (17,-25,-223,-79,95,-7,-1).
%F a(n) = A110272(n) - A079291(n).
%F G.f.: 4*x^2*(1+8*x-4*x^2+3*x^3) / ((1+x)*(1-6*x+x^2)*(1+2*x-x^2)*(1-14*x-x^2)).
%F a(n) = A045991(A000129(n)). - _Michel Marcus_, Jun 26 2014
%e a(3) = Pell(3)^3 - Pell(3)^2 = 5^3 - 5^2 = 100.
%t CoefficientList[Series[4*x^2*(3*x^3-4*x^2+8*x+1) / ((x+1)*(x^2-6*x+1)*(x^2-2*x-1)*(x^2+14*x-1)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Jun 26 2014 *)
%o (PARI)
%o pell(n) = round(((1+sqrt(2))^n-(1-sqrt(2))^n)/(2*sqrt(2)))
%o vector(50, n, pell(n-1)^3-pell(n-1)^2)
%o (Magma)
%o Pell:= func< n | n eq 0 select 0 else Evaluate(DicksonSecond(n-1,-1),2) >;
%o [Pell(n)^3 - Pell(n)^2: n in [0..40]]; // _G. C. Greubel_, Aug 20 2022
%o (SageMath)
%o def Pell(n): return lucas_number1(n,2,-1)
%o [Pell(n)^3 -Pell(n)^2 for n in (0..40)] # _G. C. Greubel_, Aug 20 2022
%Y Cf. A000129, A079291, A110272.
%K nonn,easy
%O 0,3
%A _Colin Barker_, Jun 26 2014