login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243897 Primes p such that p^5 + p^3 + p - 2 is prime. 1
3, 5, 11, 13, 23, 43, 131, 311, 353, 401, 491, 761, 1051, 1063, 1091, 1151, 1201, 1433, 1523, 1531, 1723, 1733, 1811, 1831, 1951, 1973, 2053, 2081, 2221, 2333, 2543, 2591, 2621, 2663, 2953, 2963, 3191, 3433, 3571, 3623, 3643, 3821, 3911, 4051, 4273, 4391, 4973, 5273, 5393, 5591, 6101, 6131, 6173, 6203, 6263, 6473 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Abhiram R Devesh, Table of n, a(n) for n = 1..10000

EXAMPLE

p = 3 is in this sequence because p^5 + p^3 + p - 2 = 271 (prime).

p = 5 is in this sequence because p^5 + p^3 + p - 2 = 3253 (prime).

PROG

(Python)

import sympy.ntheory as snt

p=1

while p>0:

....p=snt.nextprime(p)

....pp=p+(p**3)+(p**5)-2

....if snt.isprime(pp) == True:

........print(p, pp)

CROSSREFS

Sequence in context: A079448 A045407 A317309 * A153075 A287940 A237349

Adjacent sequences:  A243894 A243895 A243896 * A243898 A243899 A243900

KEYWORD

nonn,easy

AUTHOR

Abhiram R Devesh, Jun 14 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 3 02:48 EDT 2021. Contains 346435 sequences. (Running on oeis4.)