login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243900
Prime p such that p^5 + p^3 + p - 4 and p^5 + p^3 + p + 4 are primes.
1
3, 5, 19, 23, 277, 751, 1549, 2851, 2963, 3089, 3463, 3511, 4057, 6067, 6619, 7873, 9257, 10937, 11161, 11321, 11483, 12589, 13997, 15139, 25121, 25939, 26113, 26861, 30971, 33889, 37139, 38119, 39251, 39979, 40763, 41851, 42359, 44293, 50753, 50867, 51907, 54331, 54401, 55871, 56921, 58321, 60611, 62459
OFFSET
1,1
COMMENTS
Intersection of A243898 (Prime p such that p^5 + p^3 + p + 4 is prime) and A243899 (Prime p such that p^5 + p^3 + p - 4 is prime).
LINKS
EXAMPLE
Prime p = 3 is in this sequence as p^5 + p^3 + p + 4 = 277 (prime) and p^5 + p^3 + p - 4 = 269 (prime).
Prime p = 5 is in this sequence as p^5 + p^3 + p + 4 = 3259 (prime) and p^5 + p^3 + p - 4 = 3251 (prime).
MATHEMATICA
Select[Prime@ Range[10^4], AllTrue[#^5 + #^3 + # + {-4, 4}, PrimeQ] &] (* Michael De Vlieger, Jan 15 2018 *)
PROG
(Python)
import sympy.ntheory as snt
p=1
while p>0:
....p=snt.nextprime(p)
....pp=p+(p**3)+(p**5)-4
....qq=p+(p**3)+(p**5)+4
....if snt.isprime(pp) == True and snt.isprime(qq) == True:
........print(p)
CROSSREFS
Sequence in context: A180931 A118484 A243898 * A095826 A058778 A211439
KEYWORD
nonn
AUTHOR
Abhiram R Devesh, Jun 14 2014
STATUS
approved