login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237349
a(n) = Sum_{i=1..n} ( Product_{k|i} d(k) ), where d(n) = A000005(n).
3
1, 3, 5, 11, 13, 29, 31, 55, 61, 77, 79, 367, 369, 385, 401, 521, 523, 811, 813, 1101, 1117, 1133, 1135, 10351, 10357, 10373, 10397, 10685, 10687, 14783, 14785, 15505, 15521, 15537, 15553, 62209, 62211, 62227, 62243, 71459, 71461, 75557, 75559, 75847, 76135
OFFSET
1,2
COMMENTS
Sum of all the products formed by multiplying together the number of divisors of each divisor of the numbers from 1 to n.
Partial sums of A211776. [Joerg Arndt, Feb 11 2014]
FORMULA
a(n) = Sum_{i=1..n} ( Product_{k|i} A000005(k) ).
EXAMPLE
a(3) = 5. Sum_{i=1..3} ( Product_{k|i} d(k) ) =
( Product_{k|1} d(k) ) + ( Product_{k|2} d(k) ) + ( Product_{k|3} d(k) ) = ( d(1) ) + ( d(1) * d(2) ) + ( d(1) * d(3) ) = 1 + (1)(2) + (1)(2) = 5.
MAPLE
with(numtheory); A237349:=n->add(mul(tau(k)^(1-ceil(i/k)+floor(i/k)), k=1..i), i=1..n); seq(A237349(n), n=1..50);
MATHEMATICA
Table[Sum[Product[DivisorSigma[0, k]^(1-Ceiling[i/k]+Floor[i/k]), {k, i}], {i, n}], {n, 50}]
CROSSREFS
Sequence in context: A243897 A153075 A287940 * A095082 A375793 A265396
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Feb 06 2014
STATUS
approved