login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243816
Expansion of (x*sqrt(4*x^2+1)-x)/(x*sqrt(-(2*sqrt(4*x^2+1)-x-2)/x) + sqrt(4*x^2+1)-x-1).
1
-1, 2, 0, 2, 5, 10, 27, 86, 264, 806, 2559, 8332, 27343, 90498, 302801, 1022074, 3472577, 11868242, 40786623, 140851104, 488490057, 1700694884, 5941890068, 20826229564, 73208513161, 258031793698, 911704655945
OFFSET
0,2
LINKS
FORMULA
a(n) = (Sum_{i=0..n/2} (-1)^i*binomial(2*(n-1)-4*i, n-2*i)*binomial(n-1, i))/(n-1), n > 1, a(0)=-1, a(1)=2.
a(n) ~ 4*(15/4)^n / (sqrt(255*Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 15 2014
Conjecture D-finite with recurrence: 2*n*(n-1)*(2*n-3)*a(n) -(n-1)*(47*n^2-221*n+260)*a(n-1) +4*(38*n^3-300*n^2+777*n-660)*a(n-2) +4*(-94*n^3+1006*n^2-3617*n+4355)*a(n-3) +16*(n-5)*(64*n^2-510*n+1041)*a(n-4) -16*(n-5)*(n-6)*(47*n-221)*a(n-5) +1920*(n-5)*(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, Jan 25 2020
MATHEMATICA
CoefficientList[Series[x*(-1 + Sqrt[1 + 4*x^2])/ (-1 + Sqrt[1 + 4*x^2] + x*(-1 + Sqrt[(2 + x - 2*Sqrt[1 + 4*x^2])/x])), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 15 2014 *)
PROG
(Maxima)
a(n):=if n=0 then -1 else if n=1 then 2 else sum((-1)^i*binomial(2*(n-1)-4*i, n-2*i)*binomial(n-1, i), i, 0, n/2)/(n-1);
(PARI) x='x+O('x^30); Vec((x*sqrt(4*x^2+1)-x)/(x*sqrt(-(2*sqrt(4*x^2+1)-x-2)/x)+sqrt(4*x^2+1)-x-1)) \\ G. C. Greubel, Oct 06 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((x*Sqrt(4*x^2+1)-x)/(x*Sqrt(-(2*Sqrt(4*x^2+1)-x-2)/x)+Sqrt(4*x^2+1)-x-1))); // G. C. Greubel, Oct 06 2018
CROSSREFS
Sequence in context: A059432 A256488 A175631 * A243159 A339327 A258144
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 11 2014
STATUS
approved