OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = (Sum_{i=0..n/2} (-1)^i*binomial(2*(n-1)-4*i, n-2*i)*binomial(n-1, i))/(n-1), n > 1, a(0)=-1, a(1)=2.
a(n) ~ 4*(15/4)^n / (sqrt(255*Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 15 2014
Conjecture D-finite with recurrence: 2*n*(n-1)*(2*n-3)*a(n) -(n-1)*(47*n^2-221*n+260)*a(n-1) +4*(38*n^3-300*n^2+777*n-660)*a(n-2) +4*(-94*n^3+1006*n^2-3617*n+4355)*a(n-3) +16*(n-5)*(64*n^2-510*n+1041)*a(n-4) -16*(n-5)*(n-6)*(47*n-221)*a(n-5) +1920*(n-5)*(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, Jan 25 2020
MATHEMATICA
CoefficientList[Series[x*(-1 + Sqrt[1 + 4*x^2])/ (-1 + Sqrt[1 + 4*x^2] + x*(-1 + Sqrt[(2 + x - 2*Sqrt[1 + 4*x^2])/x])), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 15 2014 *)
PROG
(Maxima)
a(n):=if n=0 then -1 else if n=1 then 2 else sum((-1)^i*binomial(2*(n-1)-4*i, n-2*i)*binomial(n-1, i), i, 0, n/2)/(n-1);
(PARI) x='x+O('x^30); Vec((x*sqrt(4*x^2+1)-x)/(x*sqrt(-(2*sqrt(4*x^2+1)-x-2)/x)+sqrt(4*x^2+1)-x-1)) \\ G. C. Greubel, Oct 06 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((x*Sqrt(4*x^2+1)-x)/(x*Sqrt(-(2*Sqrt(4*x^2+1)-x-2)/x)+Sqrt(4*x^2+1)-x-1))); // G. C. Greubel, Oct 06 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 11 2014
STATUS
approved