

A243818


Primes p for which p^i  4 is prime for i = 1, 3 and 5.


3



11, 971, 1877, 2861, 8741, 12641, 13163, 16763, 28283, 29021, 30707, 36713, 41957, 42227, 58967, 98717, 105971, 115127, 128663, 138641, 160817, 164093, 167441, 190763, 205607, 210173, 211067, 228341, 234197, 237977, 246473, 249107, 276557, 295433, 312233
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This is a subsequence of the following:
A046132: Larger member p+4 of cousin primes (p, p+4).
A243817: Primes p for which p  4 and p^3  4 are primes.


LINKS

Abhiram R Devesh, Table of n, a(n) for n = 1..250


EXAMPLE

p = 11 is in this sequence because p  4 = 7 (prime), p^3  4 = 1327 (prime) and p^5  4 = 161047 (prime).
p = 971 is in this sequence because p  4 = 967 (prime), p^3  4 = 915498607 (prime) and p^5  4 = 863169625893847 (prime).


PROG

(Python)
import sympy.ntheory as snt
n=5
while n>1:
....n1=n4
....n2=((n**3)4)
....n3=((n**5)4)
....##Check if n1 , n2 and n3 are also primes.
....if snt.isprime(n1)== True and snt.isprime(n2)== True and snt.isprime(n3)== True:
........print(n, n1, n2, n3)
....n=snt.nextprime(n)


CROSSREFS

Cf. A046132, A243817.
Sequence in context: A083816 A233092 A302374 * A278864 A281285 A278719
Adjacent sequences: A243815 A243816 A243817 * A243819 A243820 A243821


KEYWORD

nonn,easy


AUTHOR

Abhiram R Devesh, Jun 11 2014


STATUS

approved



