login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258144
Alternating row sums of A257241, Stifel's version of the arithmetical triangle.
3
1, 2, 0, -2, 5, 11, -14, -34, 57, 127, -209, -461, 793, 1717, -3002, -6434, 11441, 24311, -43757, -92377, 167961, 352717, -646645, -1352077, 2496145, 5200301, -9657699, -20058299, 37442161, 77558761, -145422674, -300540194, 565722721, 1166803111, -2203961429
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{m = 1 .. ceiling(n/2)} (-1)^(m+1)* binomial(n, m), n >= 1.
a(2*k+1) = (1 - (-1)^(k+1)*A001791(k)), k >= 0.
a(2*k) = (1 - (-1)^k*A001700(k-1)), k >= 1.
O.g.f. for a(2*k+1), k >= 0: (2+3*x - (1-x)*(1+2*x)*c(-x))/((1+4*x)*(1-x)), with the o.g.f. c(x) of A000108 (Catalan).
O.g.f. for a(2*(k+1)), k >= 0:
(3+2*x - (1-x)*c(-x))/((1+4*x)*(1-x)).
O.g.f. for a(n), n >= 1:
x*((1+x)*(2+x+2*x^2) - (1+x+2*x^2)*(1-x^2)*c(-x^2))/((1+4*x^2)*(1-x^2)).
EXAMPLE
n = 3: a(3) = (1 - A001791(1)) = 1 - 1 = 0.
n = 4: a(4) = (1 - A001700(1)) = 1 - 3 = -2.
MATHEMATICA
Table[Sum[(-1)^(m+1)*Binomial[n, m], {m, Ceiling[n/2]}], {n, 50}] (* Paolo Xausa, Nov 14 2024 *)
PROG
(Haskell)
a258144 = sum . zipWith (*) (cycle [1, -1]) . a257241_row
-- Reinhard Zumkeller, May 22 2015
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, May 22 2015
STATUS
approved