login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Alternating row sums of A257241, Stifel's version of the arithmetical triangle.
3

%I #19 Nov 14 2024 08:23:49

%S 1,2,0,-2,5,11,-14,-34,57,127,-209,-461,793,1717,-3002,-6434,11441,

%T 24311,-43757,-92377,167961,352717,-646645,-1352077,2496145,5200301,

%U -9657699,-20058299,37442161,77558761,-145422674,-300540194,565722721,1166803111,-2203961429

%N Alternating row sums of A257241, Stifel's version of the arithmetical triangle.

%H Reinhard Zumkeller, <a href="/A258144/b258144.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = Sum_{m = 1 .. ceiling(n/2)} (-1)^(m+1)* binomial(n, m), n >= 1.

%F a(2*k+1) = (1 - (-1)^(k+1)*A001791(k)), k >= 0.

%F a(2*k) = (1 - (-1)^k*A001700(k-1)), k >= 1.

%F O.g.f. for a(2*k+1), k >= 0: (2+3*x - (1-x)*(1+2*x)*c(-x))/((1+4*x)*(1-x)), with the o.g.f. c(x) of A000108 (Catalan).

%F O.g.f. for a(2*(k+1)), k >= 0:

%F (3+2*x - (1-x)*c(-x))/((1+4*x)*(1-x)).

%F O.g.f. for a(n), n >= 1:

%F x*((1+x)*(2+x+2*x^2) - (1+x+2*x^2)*(1-x^2)*c(-x^2))/((1+4*x^2)*(1-x^2)).

%e n = 3: a(3) = (1 - A001791(1)) = 1 - 1 = 0.

%e n = 4: a(4) = (1 - A001700(1)) = 1 - 3 = -2.

%t Table[Sum[(-1)^(m+1)*Binomial[n, m], {m, Ceiling[n/2]}], {n, 50}] (* _Paolo Xausa_, Nov 14 2024 *)

%o (Haskell)

%o a258144 = sum . zipWith (*) (cycle [1, -1]) . a257241_row

%o -- _Reinhard Zumkeller_, May 22 2015

%Y Cf. A257241, A001700, A001791, A258143, A000108.

%Y Cf. A033999.

%K sign,easy

%O 1,2

%A _Wolfdieter Lang_, May 22 2015