OFFSET
1,1
COMMENTS
Numbers returned by the following function: take the t digits of n, d(1)..d(t), and replace each with the sum d(i) = (d(i-1) + d(i+1)) mod 10, where (i-1 = 0) maps to t and (i+1 > t) maps to 1.
LINKS
Anthony Sand, Table of n, a(n) for n = 1..1000
FORMULA
for digits d(1)..d(t), d(i) = (d(i-1) + d(i+1)) mod 10, where (i-1 = 0) -> t, (i+1 > t) -> 1.
EXAMPLE
For 1, the function returns (1 + 1) mod 10 = 2.
For 5, the function returns (5 + 5) mod 10 = 0.
For 125, the initial digits are (1,2,5).
d(1) <- (d(3) + d(2)) mod 10 = (5 + 2) mod 10 = 7; d(2) <- (d(1) + d(3)) mod 10 = (1 + 5) mod 10 = 6; d(3) <- (d(2) + d(1)) mod 10 = (2 + 1) mod 10 = 3.
The function returns (7,6,3) = 763.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Anthony Sand, Jun 07 2014
STATUS
approved