The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113603 Numbers obtained as the sum mod 10 of corresponding digits of n and its digit reversal. 2
2, 4, 6, 8, 0, 2, 4, 6, 8, 11, 22, 33, 44, 55, 66, 77, 88, 99, 0, 22, 33, 44, 55, 66, 77, 88, 99, 0, 11, 33, 44, 55, 66, 77, 88, 99, 0, 11, 22, 44, 55, 66, 77, 88, 99, 0, 11, 22, 33, 55, 66, 77, 88, 99, 0, 11, 22, 33, 44, 66, 77, 88, 99, 0, 11, 22, 33, 44, 55, 77, 88, 99, 0, 11, 22 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Most of the terms are palindromes except for the case when the most significant digit sum == 0 mod 10.
LINKS
EXAMPLE
a(2358) = 0880. Digit reversal of 2358 is 8532 and the corresponding digit sums mod 10 are 8+2 == 0, 5+3 == 8, 5+3 == 8, 8+2 == 0.
MAPLE
A113603 := proc(n)
dgs := convert(n, base, 10) ;
dmod10 := [] ;
for i from 1 to nops(dgs) do
dmod10 := [op(dmod10), (op(i, dgs)+op(-i, dgs)) mod 10 ] ;
end do;
add( op(i, dmod10)*10^(i-1), i=1..nops(dmod10)) ;
end proc:
seq(A113603(n), n=1..90) ; # R. J. Mathar, Oct 01 2011
# second Maple program:
a:= n-> (s-> parse(cat(seq(parse(s[i])+parse(s[-i])
mod 10, i=1..length(s)))))(""||n):
seq(a(n), n=1..100); # Alois P. Heinz, Aug 09 2015
MATHEMATICA
Table[FromDigits[Mod[Total[#], 10]&/@Thread[{IntegerDigits[n], Reverse[IntegerDigits[n]]}]], {n, 80}] (* Harvey P. Dale, Sep 05 2023 *)
CROSSREFS
Cf. A113602.
Sequence in context: A317647 A243590 A169933 * A004520 A169918 A169916
KEYWORD
base,easy,less,nonn
AUTHOR
Amarnath Murthy, Nov 09 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 04:26 EDT 2024. Contains 372921 sequences. (Running on oeis4.)