OFFSET
1,1
COMMENTS
Most of the terms are palindromes except for the case when the most significant digit sum == 0 mod 10.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
EXAMPLE
a(2358) = 0880. Digit reversal of 2358 is 8532 and the corresponding digit sums mod 10 are 8+2 == 0, 5+3 == 8, 5+3 == 8, 8+2 == 0.
MAPLE
A113603 := proc(n)
dgs := convert(n, base, 10) ;
dmod10 := [] ;
for i from 1 to nops(dgs) do
dmod10 := [op(dmod10), (op(i, dgs)+op(-i, dgs)) mod 10 ] ;
end do;
add( op(i, dmod10)*10^(i-1), i=1..nops(dmod10)) ;
end proc:
seq(A113603(n), n=1..90) ; # R. J. Mathar, Oct 01 2011
# second Maple program:
a:= n-> (s-> parse(cat(seq(parse(s[i])+parse(s[-i])
mod 10, i=1..length(s)))))(""||n):
seq(a(n), n=1..100); # Alois P. Heinz, Aug 09 2015
MATHEMATICA
Table[FromDigits[Mod[Total[#], 10]&/@Thread[{IntegerDigits[n], Reverse[IntegerDigits[n]]}]], {n, 80}] (* Harvey P. Dale, Sep 05 2023 *)
CROSSREFS
KEYWORD
base,easy,less,nonn
AUTHOR
Amarnath Murthy, Nov 09 2005
STATUS
approved