login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113603
Numbers obtained as the sum mod 10 of corresponding digits of n and its digit reversal.
2
2, 4, 6, 8, 0, 2, 4, 6, 8, 11, 22, 33, 44, 55, 66, 77, 88, 99, 0, 22, 33, 44, 55, 66, 77, 88, 99, 0, 11, 33, 44, 55, 66, 77, 88, 99, 0, 11, 22, 44, 55, 66, 77, 88, 99, 0, 11, 22, 33, 55, 66, 77, 88, 99, 0, 11, 22, 33, 44, 66, 77, 88, 99, 0, 11, 22, 33, 44, 55, 77, 88, 99, 0, 11, 22
OFFSET
1,1
COMMENTS
Most of the terms are palindromes except for the case when the most significant digit sum == 0 mod 10.
LINKS
EXAMPLE
a(2358) = 0880. Digit reversal of 2358 is 8532 and the corresponding digit sums mod 10 are 8+2 == 0, 5+3 == 8, 5+3 == 8, 8+2 == 0.
MAPLE
A113603 := proc(n)
dgs := convert(n, base, 10) ;
dmod10 := [] ;
for i from 1 to nops(dgs) do
dmod10 := [op(dmod10), (op(i, dgs)+op(-i, dgs)) mod 10 ] ;
end do;
add( op(i, dmod10)*10^(i-1), i=1..nops(dmod10)) ;
end proc:
seq(A113603(n), n=1..90) ; # R. J. Mathar, Oct 01 2011
# second Maple program:
a:= n-> (s-> parse(cat(seq(parse(s[i])+parse(s[-i])
mod 10, i=1..length(s)))))(""||n):
seq(a(n), n=1..100); # Alois P. Heinz, Aug 09 2015
MATHEMATICA
Table[FromDigits[Mod[Total[#], 10]&/@Thread[{IntegerDigits[n], Reverse[IntegerDigits[n]]}]], {n, 80}] (* Harvey P. Dale, Sep 05 2023 *)
CROSSREFS
Cf. A113602.
Sequence in context: A317647 A243590 A169933 * A004520 A169918 A169916
KEYWORD
base,easy,less,nonn
AUTHOR
Amarnath Murthy, Nov 09 2005
STATUS
approved