login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243425
G.f. A(x) satisfies: coefficient of x^n in A(x)^(2*n) equals A005260(n) = Sum_{k=0..n} C(n,k)^4.
1
1, 1, 3, 9, 60, 417, 3430, 29927, 278316, 2693437, 26976407, 277394148, 2916106328, 31220964707, 339508802940, 3741551907530, 41714692453164, 469827584596185, 5339334757945439, 61165396353689573, 705720529604453193, 8195208178337460065, 95724512701573485819, 1124070800784913396731
OFFSET
0,3
LINKS
FORMULA
G.f.: sqrt( x / Series_Reversion( x*exp( Sum_{n>=1} A005260(n)*x^n/n ) ) ), where A005260(n) = Sum_{k=0..n} C(n,k)^4.
a(n) ~ c * d^n / n^(5/2), where d= 13.142352254618115022093263384837224..., c = 0.051491668112404252102416729094836... . - Vaclav Kotesovec, Jun 05 2014
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 60*x^4 + 417*x^5 + 3430*x^6 +...
Form a table of coefficients in A(x)^(2*n) for n>=0, which begins:
[1, 0, 0, 0, 0, 0, 0, 0, 0, ...];
[1, 2, 7, 24, 147, 1008, 8135, 70296, 648172, ...];
[1, 4, 18, 76, 439, 2940, 22936, 194300, 1761411, ...];
[1, 6, 33, 164, 960, 6378, 48526, 403440, 3598050, ...];
[1, 8, 52, 296, 1810, 12128, 90972, 744656, 6542519, ...];
[1, 10, 75, 480, 3105, 21252, 158845, 1286240, 11157705, ...];
[1, 12, 102, 724, 4977, 35100, 263844, 2125020, 18253680, ...];
[1, 14, 133, 1036, 7574, 55342, 421484, 3395016, 28975933, ...];
[1, 16, 168, 1424, 11060, 84000, 651848, 5277696, 44916498, ...]; ...
then the main diagonal forms A005260(n) = Sum_{k=0..n} C(n,k)^4.
PROG
(PARI) {a(n)=polcoeff(sqrt(x/serreverse(x*exp(sum(m=1, n+1, sum(k=0, m, binomial(m, k)^4)*x^m/m +x^2*O(x^n))))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A242903.
Sequence in context: A340389 A140812 A202210 * A018513 A143761 A269961
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 04 2014
STATUS
approved