login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243424
Triangle T(n,k) read by rows of number of ways k domicules can be placed on an n X n square (n >= 0, 0 <= k <= floor(n^2/2)).
9
1, 1, 1, 6, 3, 1, 20, 110, 180, 58, 1, 42, 657, 4890, 18343, 33792, 27380, 7416, 280, 1, 72, 2172, 36028, 362643, 2307376, 9382388, 24121696, 37965171, 34431880, 16172160, 3219364, 170985, 1, 110, 5375, 154434, 2911226, 38049764, 355340561, 2408715568
OFFSET
0,4
COMMENTS
A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.
The n-th row gives the coefficients of the matching-generating polynomial of the n X n king graph. - Eric W. Weisstein, Jun 20 2017
LINKS
Eric Weisstein's World of Mathematics, King Graph
Eric Weisstein's World of Mathematics, Matching-Generating Polynomial
EXAMPLE
T(2,1) = 6:
+---+ +---+ +---+ +---+ +---+ +---+
|o-o| | | |o | | o| |o | | o|
| | | | || | | || | \ | | / |
| | |o-o| |o | | o| | o| |o |
+---+ +---+ +---+ +---+ +---+ +---+
T(2,2) = 3:
+---+ +---+ +---+
|o-o| |o o| |o o|
| | || || | X |
|o-o| |o o| |o o|
+---+ +---+ +---+
Triangle T(n,k) begins:
1;
1;
1, 6, 3;
1, 20, 110, 180, 58;
1, 42, 657, 4890, 18343, 33792, 27380, 7416, 280;
1, 72, 2172, 36028, 362643, 2307376, 9382388, 24121696, 37965171, ...
...
MAPLE
b:= proc(n, l) option remember; local d, f, k;
d:= nops(l)/2; f:=false;
if n=0 then 1
elif l[1..d]=[f$d] then b(n-1, [l[d+1..2*d][], true$d])
else for k to d while not l[k] do od;
expand(b(n, subsop(k=f, l))+
`if`(k<d and n>1 and l[k+d+1],
x*b(n, subsop(k=f, k+d+1=f, l)), 0)+
`if`(k>1 and n>1 and l[k+d-1],
x*b(n, subsop(k=f, k+d-1=f, l)), 0)+
`if`(n>1 and l[k+d], x*b(n, subsop(k=f, k+d=f, l)), 0)+
`if`(k<d and l[k+1], x*b(n, subsop(k=f, k+1=f, l)), 0))
fi
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [true$(n*2)])):
seq(T(n), n=0..7);
MATHEMATICA
b[n_, l_] := b[n, l] = Module[{d, f, k}, d = Length[l]/2; f = False; Which[ n == 0, 1, l[[1 ;; d]] == Table[f, d], b[n-1, Join[l[[d+1 ;; 2d]], Table[ True, d]]], True, For[k = 1, !l[[k]], k++]; Expand[b[n, ReplacePart[l, k -> f]] + If[k<d && n>1 && l[[k+d+1]], x*b[n, ReplacePart[l, {k -> f, k + d + 1 -> f}]], 0] + If[k>1 && n>1 && l[[k + d - 1]], x*b[n, ReplacePart[ l, {k -> f, k + d - 1 -> f}]], 0] + If[n>1 && l[[k + d]], x*b[n, ReplacePart[l, {k -> f, k+d -> f}]], 0] + If[k<d && l[[k+1]], x*b[n, ReplacePart[l, {k -> f, k+1 -> f}]], 0]]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][
b[n, Table[True, 2n]]];
Table[T[n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jun 09 2018, after Alois P. Heinz *)
CROSSREFS
Columns k=0-5 give: A000012, A002943(n-1) for n>0, A243464, A243465, A243466, A243467.
Row sums give A220638.
T(n,floor(n^2/2)) gives A243510.
T(n,floor(n^2/4)) gives A243511.
Cf. A242861 (the same for dominoes), A239264.
Sequence in context: A240264 A119743 A272643 * A182227 A108451 A122178
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Jun 04 2014
STATUS
approved