login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243138
a(n) = n^2 + 15*n + 13.
1
13, 29, 47, 67, 89, 113, 139, 167, 197, 229, 263, 299, 337, 377, 419, 463, 509, 557, 607, 659, 713, 769, 827, 887, 949, 1013, 1079, 1147, 1217, 1289, 1363, 1439, 1517, 1597, 1679, 1763, 1849, 1937, 2027, 2119, 2213, 2309, 2407, 2507, 2609, 2713, 2819, 2927, 3037, 3149
OFFSET
0,1
COMMENTS
From Klaus Purath, Dec 13 2022: (Start)
Numbers m such that 4*m + 173 is a square.
The product of two consecutive terms belongs to the sequence, a(n)*a(n+1) = a(a(n)+n).
The prime terms in this sequence are listed in A153422. Each prime factor p divides exactly 2 out of any p consecutive terms. If a(i) and a(k) form such a pair that are divisible by p, then i + k == -15 (mod p). (End)
FORMULA
G.f.: (13 - 10*x - x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
From Klaus Purath, Dec 13 2022: (Start)
a(n) = A119412(n+2) - 13.
a(n) = A132759(n+1) - 1.
a(n) = A098847(n+1) + n. (End)
Sum_{n>=0} 1/a(n) = tan(sqrt(173)*Pi/2)*Pi/sqrt(173) + 742077303/604626139. - Amiram Eldar, Feb 14 2023
E.g.f.: (13 + 16*x + x^2)*exp(x). - Elmo R. Oliveira, Oct 18 2024
MATHEMATICA
Table[n^2 + 15 n + 13, {n, 0, 50}] (* or *) CoefficientList[Series[(13 - 10 x - x^2)/(1 - x)^3, {x, 0, 50}], x]
LinearRecurrence[{3, -3, 1}, {13, 29, 47}, 50] (* Harvey P. Dale, Sep 06 2020 *)
PROG
(Magma) [n^2+15*n+13: n in [0..50]];
(PARI) a(n)=n^2+15*n+13 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jun 02 2014
STATUS
approved