Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #53 Oct 18 2024 20:30:02
%S 13,29,47,67,89,113,139,167,197,229,263,299,337,377,419,463,509,557,
%T 607,659,713,769,827,887,949,1013,1079,1147,1217,1289,1363,1439,1517,
%U 1597,1679,1763,1849,1937,2027,2119,2213,2309,2407,2507,2609,2713,2819,2927,3037,3149
%N a(n) = n^2 + 15*n + 13.
%C From _Klaus Purath_, Dec 13 2022: (Start)
%C Numbers m such that 4*m + 173 is a square.
%C The product of two consecutive terms belongs to the sequence, a(n)*a(n+1) = a(a(n)+n).
%C The prime terms in this sequence are listed in A153422. Each prime factor p divides exactly 2 out of any p consecutive terms. If a(i) and a(k) form such a pair that are divisible by p, then i + k == -15 (mod p). (End)
%H Vincenzo Librandi, <a href="/A243138/b243138.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F G.f.: (13 - 10*x - x^2)/(1 - x)^3.
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
%F From _Klaus Purath_, Dec 13 2022: (Start)
%F a(n) = A119412(n+2) - 13.
%F a(n) = A132759(n+1) - 1.
%F a(n) = A098847(n+1) + n. (End)
%F Sum_{n>=0} 1/a(n) = tan(sqrt(173)*Pi/2)*Pi/sqrt(173) + 742077303/604626139. - _Amiram Eldar_, Feb 14 2023
%F E.g.f.: (13 + 16*x + x^2)*exp(x). - _Elmo R. Oliveira_, Oct 18 2024
%t Table[n^2 + 15 n + 13, {n, 0, 50}] (* or *) CoefficientList[Series[(13 - 10 x - x^2)/(1 - x)^3, {x, 0, 50}], x]
%t LinearRecurrence[{3,-3,1},{13,29,47},50] (* _Harvey P. Dale_, Sep 06 2020 *)
%o (Magma) [n^2+15*n+13: n in [0..50]];
%o (PARI) a(n)=n^2+15*n+13 \\ _Charles R Greathouse IV_, Jun 17 2017
%Y Cf. A098847, A119412, A126719, A132759, A153422.
%K nonn,easy
%O 0,1
%A _Vincenzo Librandi_, Jun 02 2014