

A126719


a(n) = n^2 + 9n + 23.


7



23, 31, 37, 41, 43, 43, 41, 37, 31, 23, 13, 1, 13, 29, 47, 67, 89, 113, 139, 167, 197, 229, 263, 299, 337, 377, 419, 463, 509, 557, 607, 659, 713, 769, 827, 887, 949, 1013, 1079, 1147, 1217, 1289, 1363, 1439, 1517, 1597, 1679, 1763, 1849, 1937, 2027, 2119, 2213
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Derivation is similar to that of A126665, which see for further information.


LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000
Michael M. Ross, Natural Numbers
Robert Sacks, Number Spiral: Method of Common Differences
Index entries for linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

a(n) = 3*a(n1)3*a(n2)+a(n3), a(0)=23, a(1)=31, a(2)=37. [Harvey P. Dale, Oct 19 2011]
G.f.: ((3813*x)*x23)/(x1)^3. [Harvey P. Dale, Oct 19 2011]


EXAMPLE

For n=8, 1*8^2 + 9*8 + 23 = 31.


MAPLE

A126719:=n>n^2+9*n+23: seq(A126719(n), n=0..100); # Wesley Ivan Hurt, Jan 20 2017


MATHEMATICA

Table[n^2+9n+23, {n, 0, 60}] (* or *) LinearRecurrence[{3, 3, 1}, {23, 31, 37}, 60] (* Harvey P. Dale, Oct 19 2011 *)


PROG

(PARI) a(n)=n^2+9*n+23 \\ Charles R Greathouse IV, Oct 07 2015


CROSSREFS

Cf. A126665.
Sequence in context: A036267 A107934 A155107 * A110677 A169640 A026051
Adjacent sequences: A126716 A126717 A126718 * A126720 A126721 A126722


KEYWORD

sign,easy


AUTHOR

Michael M. Ross, Mar 13 2007


STATUS

approved



