|
|
A126720
|
|
Primes p such that p - q = 24, where q is the previous prime before p; or prime numbers preceded by precisely 23 composite numbers.
|
|
1
|
|
|
1693, 2203, 4201, 4547, 4783, 5261, 6197, 6421, 6761, 7103, 7393, 7817, 8147, 8353, 9091, 11027, 11657, 11863, 12097, 12143, 13033, 13291, 16057, 16217, 16477, 16787, 16811, 17077, 17707, 18013, 18617, 18661, 19207, 19531, 20507, 22433, 22901
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) = A098974(n) + 24. - Amiram Eldar, Mar 13 2020
a(n) >> n log^2 n. - Charles R Greathouse IV, Mar 13 2020
|
|
MATHEMATICA
|
a = {}; Do[If[Prime[x + 1] - Prime[x] == 24, AppendTo[a, Prime[x + 1]]], {x, 1, 10000}]; a
|
|
PROG
|
(PARI) q=2; forprime(p=3, 1e5, if(p-q==24, print1(p", ")); q=p) \\ Charles R Greathouse IV, Mar 13 2020
|
|
CROSSREFS
|
Cf. A000230, A033560, A031505, A031925, A031927, A098974, A098976, A061779.
Sequence in context: A237533 A089674 A252429 * A325884 A224605 A252570
Adjacent sequences: A126717 A126718 A126719 * A126721 A126722 A126723
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Artur Jasinski, Feb 13 2007
|
|
STATUS
|
approved
|
|
|
|