|
|
A242502
|
|
Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 4.
|
|
2
|
|
|
1, 0, 4, 6, 10, 36, 48, 126, 259, 456, 1064, 1956, 3939, 8112, 15300, 31174, 60951, 118580, 236456, 458172, 900185, 1765556, 3431792, 6728410, 13107393, 25538448, 49856392, 96966572, 188914574, 367741688, 715053048, 1391512424, 2705016795, 5258241032
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
4,3
|
|
COMMENTS
|
With offset 8 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -4.
|
|
LINKS
|
|
|
FORMULA
|
Recurrence (for n>=8): (n-4)*(n+8)*(2*n-3)*(2*n-1)*(n^4 - 2*n^3 - n^2 + 2*n - 256)*a(n) = -64*(n-5)*(n-1)*(n+7)*(2*n-3)*(2*n+1)*a(n-1) + 2*(2*n-1)*(2*n^7 - n^6 + 14*n^5 - 199*n^4 - 288*n^3 + 600*n^2 - 5360*n + 2928)*a(n-2) + 2*(n-1)*(2*n-3)*(2*n+1)*(2*n^5 + n^4 - 9*n^3 + 28*n^2 - 508*n + 608)*a(n-3) - (n-4)*n*(2*n-1)*(2*n+1)*(n^4 + 2*n^3 - n^2 - 2*n - 256)*a(n-4). - Vaclav Kotesovec, May 20 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|