|
|
A242500
|
|
Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 2.
|
|
2
|
|
|
1, 0, 2, 4, 3, 16, 19, 40, 95, 136, 321, 588, 1057, 2240, 3998, 7848, 15339, 28464, 56143, 106788, 204083, 396704, 755052, 1457456, 2806531, 5377112, 10382243, 19947252, 38382957, 73996576, 142311198, 274283168, 528438319, 1017784016, 1962451118, 3781912684
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,3
|
|
COMMENTS
|
With offset 4 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -2.
|
|
LINKS
|
|
|
FORMULA
|
Recurrence (for n>=6): (n+4)*(2*n-5)*(2*n-3)*(n^4 - 6*n^3 + 11*n^2 - 6*n - 16)*a(n) = -16*(n-3)*(n+3)*(2*n-5)*(2*n-1)*a(n-1) + 2*(n-2)*(2*n-3)*(2*n^5 - 7*n^4 + 8*n^3 - 51*n^2 + 28*n + 32)*a(n-2) + 2*(n-3)*(2*n-5)*(2*n-1)*(2*n^4 - 3*n^3 - 2*n^2 + 11*n - 24)*a(n-3) - (n-4)*(2*n-3)*(2*n-1)*(n^4 - 2*n^3 - n^2 + 2*n - 16)*a(n-4). - Vaclav Kotesovec, May 20 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|