login
A242501
Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 3.
2
1, 0, 3, 5, 6, 25, 31, 75, 162, 259, 609, 1106, 2122, 4410, 8076, 16197, 31527, 59961, 118844, 227700, 441507, 860860, 1654731, 3218501, 6226818, 12027405, 23337471, 45082050, 87258876, 168935018, 326536646, 632132760, 1222716653, 2364969824, 4576680195
OFFSET
3,3
COMMENTS
With offset 6 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -3.
LINKS
FORMULA
Recurrence (for n>=7): (n-3)*(n-2)*(n-1)*(n+6)*(16*n^4 - 64*n^3 + 56*n^2 + 16*n - 1311)*a(n) = -288*(n-4)*(n-2)*n*(n+5)*(2*n-3)*a(n-1) + 2*(n-1)*(16*n^7 - 64*n^6 + 136*n^5 - 1048*n^4 + 1621*n^3 + 1202*n^2 - 9162*n + 7866)*a(n-2) + 2*(n-2)*n*(2*n-3)*(16*n^5 - 32*n^4 - 48*n^3 + 212*n^2 - 1429*n + 2145)*a(n-3) - (n-4)*(n-1)^2*n*(16*n^4 - 40*n^2 - 1287)*a(n-4). - Vaclav Kotesovec, May 20 2014
CROSSREFS
Column k=3 of A242498.
Sequence in context: A103022 A086189 A137082 * A099414 A004785 A099744
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2014
STATUS
approved