login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242209
Semiprimes sp = p^2 + q^2 + r^2 where p, q and r are consecutive primes.
1
38, 339, 579, 1731, 5739, 8499, 32259, 133851, 145779, 163851, 207579, 222531, 235779, 260187, 308019, 323619, 366819, 469731, 550491, 644979, 684699, 743091, 926427, 1003539, 1242939, 1743531, 1808259, 1852107, 1909059, 2075091, 2585571, 4226979, 5358291
OFFSET
1,1
COMMENTS
Subsequence of A133529.
All the terms in the sequence, except a(1), are divisible by 3.
LINKS
EXAMPLE
a(1) = 38 = 2^2 + 3^2 + 5^2 = 2*19 is semiprime.
a(2) = 339 = 7^2 + 11^2 + 13^2 = 3*113 is semiprime.
MAPLE
with(numtheory): A242209:= proc()local k ; k:=(ithprime(x)^2+ithprime(x+1)^2+ithprime(x+2)^2); if bigomega(k)=2 then RETURN (k); fi; end: seq(A242209 (), x=1..500);
MATHEMATICA
Select[Total[#^2]&/@Partition[Prime[Range[300]], 3, 1], PrimeOmega[#]==2&] (* Harvey P. Dale, Nov 05 2015 *)
PROG
(PARI) for(k=1, 500, sp=prime(k)^2+prime(k+1)^2+prime(k+2)^2; if(bigomega(sp)==2, print1(sp, ", "))) \\ Colin Barker, May 07 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, May 07 2014
STATUS
approved