login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242042
Expansion of (b(q) * c(q^3) / 3)^2 in powers of q where b(), c() are cubic AGM theta functions.
2
1, -6, 9, 14, -54, 36, 65, -162, 126, 148, -438, 252, 344, -756, 513, 546, -1458, 756, 1022, -2064, 1332, 1352, -3510, 1764, 2198, -4374, 2808, 2710, -6804, 3276, 4161, -7992, 4914, 4816, -11826, 5616, 6860, -13188, 8190, 7658, -18576, 8892, 10804, -20412
OFFSET
2,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
In McKay and Sebbar on page 274 in equation (8.2) the last term on the right side is a multiple of the g.f.
LINKS
J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann. 318 (2000), no. 2, 255-275. MR1795562 (2001m:11063)
FORMULA
Expansion of (eta(q) * eta(q^9))^6 / eta(q^3)^4 in powers of q.
Euler transform of period 9 sequence [ -6, -6, -2, -6, -6, -2, -6, -6, -8, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 81 (t/i)^2 f(t) where q = exp(2 Pi i t).
G.f.: x^2 * Product_{k>0} (1 - x^k)^6 * (1 - x^(9*k))^6 / (1 - x^(3*k))^4.
Convolution square of A106401.
a(3*n) = -6 * A198956(n). a(3*n + 1) = 9 * A033690(n).
EXAMPLE
G.f. = q^2 - 6*q^3 + 9*q^4 + 14*q^5 - 54*q^6 + 36*q^7 + 65*q^8 - 162*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q^2 (QPochhammer[ q] QPochhammer[ q^9])^6 / QPochhammer[ q^3]^4, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<2, 0, n-=2; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^9 + A))^6 / eta(x^3 + A)^4, n))};
(Magma) A := Basis( ModularForms( Gamma0(9), 4), 19); A[3] - 6*A[4] + 9*A[5];
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 12 2014
STATUS
approved