login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (b(q) * c(q^3) / 3)^2 in powers of q where b(), c() are cubic AGM theta functions.
2

%I #15 Sep 08 2022 08:46:08

%S 1,-6,9,14,-54,36,65,-162,126,148,-438,252,344,-756,513,546,-1458,756,

%T 1022,-2064,1332,1352,-3510,1764,2198,-4374,2808,2710,-6804,3276,4161,

%U -7992,4914,4816,-11826,5616,6860,-13188,8190,7658,-18576,8892,10804,-20412

%N Expansion of (b(q) * c(q^3) / 3)^2 in powers of q where b(), c() are cubic AGM theta functions.

%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

%C In McKay and Sebbar on page 274 in equation (8.2) the last term on the right side is a multiple of the g.f.

%H G. C. Greubel, <a href="/A242042/b242042.txt">Table of n, a(n) for n = 2..2500</a>

%H J. McKay and A. Sebbar, <a href="http://dx.doi.org/10.1007/s002080000116">Fuchsian groups, automorphic functions and Schwarzians</a>, Math. Ann. 318 (2000), no. 2, 255-275. MR1795562 (2001m:11063)

%F Expansion of (eta(q) * eta(q^9))^6 / eta(q^3)^4 in powers of q.

%F Euler transform of period 9 sequence [ -6, -6, -2, -6, -6, -2, -6, -6, -8, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 81 (t/i)^2 f(t) where q = exp(2 Pi i t).

%F G.f.: x^2 * Product_{k>0} (1 - x^k)^6 * (1 - x^(9*k))^6 / (1 - x^(3*k))^4.

%F Convolution square of A106401.

%F a(3*n) = -6 * A198956(n). a(3*n + 1) = 9 * A033690(n).

%e G.f. = q^2 - 6*q^3 + 9*q^4 + 14*q^5 - 54*q^6 + 36*q^7 + 65*q^8 - 162*q^9 + ...

%t a[ n_] := SeriesCoefficient[ q^2 (QPochhammer[ q] QPochhammer[ q^9])^6 / QPochhammer[ q^3]^4, {q, 0, n}];

%o (PARI) {a(n) = my(A); if( n<2, 0, n-=2; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^9 + A))^6 / eta(x^3 + A)^4, n))};

%o (Magma) A := Basis( ModularForms( Gamma0(9), 4), 19); A[3] - 6*A[4] + 9*A[5];

%Y Cf. A033680, A106401, A198956.

%K sign

%O 2,2

%A _Michael Somos_, Aug 12 2014