The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241670 Semiprimes of the form n^4 - n^3 - n - 1. 2
 187, 1073, 8989, 35657, 61423, 151979, 1632923, 2495959, 8345537, 9658823, 18687173, 49194347, 64880909, 77244217, 179502923, 250046873, 451259573, 502874849, 588444323, 651263839, 830296829, 1723401587, 1935548789, 4552183739, 4839132407, 8739047573, 13324055659 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Since n^4 - n^3 - n - 1 = (n^2 + 1)*(n^2 - n - 1), it is a must that (n^2 + 1) and (n^2 - n - 1) both should be prime. Primes of the form (n^2+1) are at A002496. Primes of the form (n^2-n-1) are at A002327. LINKS K. D. Bajpai, Table of n, a(n) for n = 1..5330 EXAMPLE 187 is in the sequence because 4^4 - 4^3 - 4 - 1 = 187 = 11 * 17, which is semiprime. 1073 is in the sequence because 6^4 - 6^3 - 6 - 1 = 1073 = 29 * 37, which is semiprime. MAPLE select(k -> numtheory:-bigomega(k)=2, [seq(x^4 - x^3 - x - 1, x=1..1000)]); MATHEMATICA Select[Table[n^4 - n^3 - n - 1, {n, 500}], PrimeOmega[#] == 2 &] PROG (PARI) for(n=1, 10^4, p=n^2+1; q=n^2-n-1; if(isprime(p)&&isprime(q), print1(p*q, ", "))) \\ Derek Orr, Aug 09 2014 (MAGMA) IsSemiprime:= func; [s: n in [1..400] | IsSemiprime(s) where s is n^4 - n^3 - n - 1]; // Vincenzo Librandi, Aug 10 2014 CROSSREFS Cf. A000040, A001358, A002327, A002496. Sequence in context: A045224 A308810 A063346 * A134163 A030536 A222911 Adjacent sequences:  A241667 A241668 A241669 * A241671 A241672 A241673 KEYWORD nonn,less AUTHOR K. D. Bajpai, Aug 09 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 21:32 EDT 2020. Contains 337910 sequences. (Running on oeis4.)