login
A241668
Sum of iterates of A241663 up to and including either 0 or 1.
2
1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 10, 0, 9, 0, 0, 0, 22, 0, 15, 0, 0, 0, 34, 0, 6, 0, 0, 0, 31, 0, 27, 0, 0, 0, 3, 0, 33, 0, 0, 0, 70, 0, 39, 0, 0, 0, 82, 0, 21, 0, 0, 0, 70, 0, 10, 0, 0, 0, 65, 0, 57, 0, 0, 0, 9, 0, 63, 0, 0, 0, 130, 0, 69, 0, 0, 0, 21, 0, 75, 0
OFFSET
1,7
COMMENTS
This sequence is similar to the totient summatory function A092693, but uses the Schemmel totient function A241663 instead of the phi function.
EXAMPLE
A241663(11)=7, A241663(7)=3, A241663(3)=0, so a(11)=7+3+0=10.
A241663(9)=0, so a(9)=0.
MATHEMATICA
L[n_, m_] :=
If[Min[Select[Divisors[n], PrimeQ]] <= m, 0,
n*Times @@ (1 - m/(Select[Divisors[n], PrimeQ]))]
a[0]:=0
a[5]:=1
a[n_]:=L[n, 4]+a[L[n, 4]]
PROG
(PARI)
A241663(n) = {my(f = factor(n)); prod(i=1, #f~, if ((f[i, 1] == 2) || (f[i, 1] == 3), 0, f[i, 1]^(f[i, 2]-1)*(f[i, 1]-4))); } \\ From A241663
A241668(n) = { my(s=(1==n)); while(n>1, n = A241663(n); s += n); (s); }; \\ Antti Karttunen, Oct 01 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Colin Defant, Apr 26 2014
STATUS
approved