The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241656 Smallest semiprime, sp, such that 2n - sp is a semiprime, or a(n)=0 if there is no such sp. 1
 0, 0, 0, 4, 4, 6, 4, 6, 4, 6, 0, 9, 4, 6, 4, 6, 9, 10, 4, 6, 4, 6, 21, 9, 4, 6, 15, 10, 9, 9, 4, 6, 4, 6, 15, 10, 9, 14, 4, 6, 25, 10, 4, 6, 4, 6, 9, 9, 4, 6, 9, 9, 15, 14, 4, 6, 21, 10, 25, 9, 4, 6, 4, 6, 9, 9, 15, 14, 4, 6, 9, 10, 4, 6, 4, 6, 9, 10, 15, 14, 4, 6, 21, 9, 4, 6, 15, 10, 9, 14 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Conjecture: every even number greater than 22 is a sum of two semiprimes. Only 2, 4, 6 & 22 cannot be so represented. If n is prime, then a(n) must be either 4 or an odd semiprime. See A241535. First occurrence of the k-th semiprime (A001358): 4, 6, 12, 18, 38, 27, 23, 124, 41, 326, 127, 1344, 147, 1278, 189, 3294, 757, 317, 1362, 1775, 3300, 2504, 2025, 7394, 84848, 13899, 56584, 11347, 156396, 7667, 7905, 15447, 404898, 20937, ..., . LINKS EXAMPLE a(12) = 9 because 2*12 = 24 = 9 + 15, two semiprimes. MATHEMATICA NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[ sgn < 0, sp--, sp++]]; If[ sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; f[n_] := Block[{en = 2 n, sp = 4}, While[ PrimeOmega[en - sp] != 2, sp = NextSemiPrime[sp]]; If[en > sp, sp, 0]]; Array[ f, 90] CROSSREFS Cf. A001358, A241535, A241658. Sequence in context: A059656 A205373 A064041 * A275161 A077553 A010659 Adjacent sequences:  A241653 A241654 A241655 * A241657 A241658 A241659 KEYWORD nonn AUTHOR Vladimir Shevelev and Robert G. Wilson v, Apr 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 00:22 EDT 2021. Contains 347549 sequences. (Running on oeis4.)