login
A241655
Number of partitions p of n such that 2*(number of even numbers in p) = (number of odd numbers in p).
5
0, 0, 1, 1, 3, 4, 6, 9, 12, 17, 21, 31, 37, 54, 66, 92, 114, 159, 198, 268, 335, 448, 563, 736, 921, 1190, 1485, 1892, 2340, 2953, 3636, 4534, 5542, 6861, 8333, 10226, 12347, 15052, 18079, 21907, 26168, 31537, 37526, 44987, 53307, 63653, 75156, 89369, 105204
OFFSET
0,5
COMMENTS
Each number in p is counted once, regardless of its multiplicity.
FORMULA
a(n) = A241654(n) - A241653(n) for n >= 0.
a(n) + A241651(n) + A241653(n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts these 6 partitions: 6, 42, 411, 222, 2211, 21111.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; s0[p_] := Count[Mod[DeleteDuplicates[p], 2], 0];
s1[p_] := Count[Mod[DeleteDuplicates[p], 2], 1];
Table[Count[f[n], p_ /; 2 s0[p] < s1[p]], {n, 0, z}] (* A241651 *)
Table[Count[f[n], p_ /; 2 s0[p] <= s1[p]], {n, 0, z}] (* A241652 *)
Table[Count[f[n], p_ /; 2 s0[p] == s1[p]], {n, 0, z}] (* A241653 *)
Table[Count[f[n], p_ /; 2 s0[p] >= s1[p]], {n, 0, z}] (* A241654 *)
Table[Count[f[n], p_ /; 2 s0[p] > s1[p]], {n, 0, z}] (* A241655 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 27 2014
STATUS
approved