The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241341 Number of partitions p of n such that ceiling(mean(p)) is a part and floor(mean(p)) is not. 5
 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 4, 6, 2, 13, 16, 14, 23, 41, 38, 73, 58, 94, 152, 196, 137, 271, 384, 422, 481, 751, 624, 1149, 1142, 1558, 2096, 2120, 2116, 3748, 4477, 5075, 4788, 7840, 7543, 11227, 11772, 13122, 18916, 22408, 19619, 29862, 32604, 41688 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 LINKS EXAMPLE a(10) counts these 4 partitions:  541, 5311, 442, 3331. MATHEMATICA z = 30; f[n_] := f[n] = IntegerPartitions[n];     t1 = Table[Count[f[n], p_ /; MemberQ[p, Floor[Mean[p]]] && MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241340 *)     t2 = Table[Count[f[n], p_ /; ! MemberQ[p, Floor[Mean[p]]] && MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241341 *)     t3 = Table[Count[f[n], p_ /; MemberQ[p, Floor[Mean[p]]] && ! MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241342 *)     t4 = Table[Count[f[n], p_ /; ! MemberQ[p, Floor[Mean[p]]] && ! MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241343 *)     t5 = Table[Count[f[n], p_ /; MemberQ[p, Floor[Mean[p]]] || MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241344 *) CROSSREFS Cf. A241340, A241342, A241343, A241344. Sequence in context: A256508 A059030 A066984 * A085595 A173458 A054222 Adjacent sequences:  A241338 A241339 A241340 * A241342 A241343 A241344 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 20 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 06:52 EDT 2020. Contains 334747 sequences. (Running on oeis4.)