The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054222 Consider all integer triples (i,j,k), j,k>0, with binomial(i+2, 3) = binomial(j+2, 3) + k^3, ordered by increasing i; sequence gives j values. 3
 4, 6, 2, 17, 25, 22, 62, 123, 23, 214, 341, 510, 246, 727, 932, 998, 573, 1329, 1726, 2195, 2742, 3373, 3515, 2516, 4094, 4155, 4911, 5006, 5830, 1746, 6857, 5352, 4057, 7998, 8273, 9259, 10646, 1331, 12165, 12239, 884, 13822, 15623, 17574, 19681 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS i values are A054221 and k values are A054223. Up to a(59), which is as far as computed, there is only one unique pair (j,k) associated with each i. - R. J. Mathar, Nov 10 2006 LINKS Bert Dobbelaere, Table of n, a(n) for n = 0..271 EXAMPLE binomial(7+2, 3) = 84 = binomial(4+2, 3) + 4^3, so 4 is a term; binomial(8+2, 3) = 120 = binomial(6+2, 3) + 4^3, so 6 is a term. MATHEMATICA max = 20000; s = {}; Do[k = ((i*(i+1)*(i+2) - j*(j+1)*(j+2))/6)^(1/3); If[IntegerQ[k], Print[j]; AppendTo[s, {i, j}]], {j, 1, max}, {i, j+1, max}]; Sort[s, #1[[1]] < #2[[1]] &][[All, 2]] (* Jean-François Alcover, Oct 12 2011 *) PROG (C) #include #include #include unsigned A000578inv(unsigned long long n) { unsigned long long n3 = (unsigned long long)cbrt((double)n) ; for(unsigned long long k= n3-1 ; k <= n3+1 ; k++) if ( k*k*k == n) return k ; return 0 ; } int main(int argc, char *argv[]) { const unsigned long long imax = cbrt((double)ULLONG_MAX)-2. ; for(unsigned i=1; i

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 09:29 EDT 2024. Contains 373568 sequences. (Running on oeis4.)