OFFSET
0,1
COMMENTS
Up to a(59), which is as far as computed, there is only one unique pair (j,k) associated with each i. - R. J. Mathar, Nov 10 2006
LINKS
Bert Dobbelaere, Table of n, a(n) for n = 0..271
EXAMPLE
binomial(7+2, 3) = 84 = binomial(4+2, 3) + 4^3, so 4 is a term;
binomial(8+2, 3) = 120 = binomial(6+2, 3) + 4^3, so 6 is a term.
MATHEMATICA
max = 20000; s = {}; Do[k = ((i*(i+1)*(i+2) - j*(j+1)*(j+2))/6)^(1/3); If[IntegerQ[k], Print[j]; AppendTo[s, {i, j}]], {j, 1, max}, {i, j+1, max}]; Sort[s, #1[[1]] < #2[[1]] &][[All, 2]] (* Jean-François Alcover, Oct 12 2011 *)
PROG
(C) #include <stdio.h> #include <limits.h> #include <math.h> unsigned A000578inv(unsigned long long n) { unsigned long long n3 = (unsigned long long)cbrt((double)n) ; for(unsigned long long k= n3-1 ; k <= n3+1 ; k++) if ( k*k*k == n) return k ; return 0 ; } int main(int argc, char *argv[]) { const unsigned long long imax = cbrt((double)ULLONG_MAX)-2. ; for(unsigned i=1; i<imax; i++) { unsigned long long i3 = i*(unsigned long long)(i+1)*(unsigned long long)(i+2) ; for(unsigned j=1 ; j < i ; j++) { unsigned long long k3 = i3- j*(unsigned long long)(j+1)*(unsigned long long)(j+2) ; if( k3 % 6 == 0) { unsigned k=A000578inv(k3/6) ; if ( k ) { printf("%d, ", j) ; fflush(stdout) ; } } } } } /* R. J. Mathar, Nov 10 2006 */
CROSSREFS
KEYWORD
nice,nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 04 2000
EXTENSIONS
More terms from R. J. Mathar, Nov 10 2006
STATUS
approved