The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054223 Consider all integer triples (i,j,k), j,k>0, with binomial(i+2,3)=binomial(j+2,3)+k^3, ordered by increasing i; sequence gives k values. 3
 4, 4, 6, 11, 9, 26, 16, 25, 110, 36, 49, 64, 335, 81, 276, 100, 649, 121, 144, 169, 196, 225, 670, 2024, 256, 1166, 289, 517, 324, 3522, 361, 3068, 4071, 400, 2485, 441, 484, 6137, 529, 1534, 6816, 576, 625, 676, 729, 784, 841, 900, 961, 15851, 16199, 12099 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS i values are A054221 and j values are A054222. LINKS Bert Dobbelaere, Table of n, a(n) for n = 0..271 EXAMPLE binomial(7+2,3)=84=binomial(4+2,3)+4^3; binomial(8+2,3)=120=binomial(6+2,3)+4^3; MATHEMATICA max = 20000; s = {}; Do[k = ((i*(i+1)*(i+2) - j*(j+1)*(j+2))/6)^(1/3); If[IntegerQ[k], Print[k]; AppendTo[s, {i, k}]], {j, 1, max}, {i, j+1, max}]; Sort[s, #1[[1]] < #2[[1]] &][[All, 2]] (* Jean-François Alcover, Oct 12 2011 *) PROG (C) #include #include #include unsigned A000578inv(unsigned long long n) { unsigned long long n3 = (unsigned long long)cbrt((double)n) ; for(unsigned long long k= n3-1 ; k <= n3+1 ; k++) if ( k*k*k == n) return k ; return 0 ; } int main(int argc, char *argv[]) { const unsigned long long imax = cbrt((double)ULLONG_MAX)-2. ; for(unsigned i=1; i

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 17:01 EDT 2024. Contains 373391 sequences. (Running on oeis4.)