login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Consider all integer triples (i,j,k), j,k>0, with binomial(i+2, 3) = binomial(j+2, 3) + k^3, ordered by increasing i; sequence gives j values.
3

%I #20 Jan 28 2022 01:29:16

%S 4,6,2,17,25,22,62,123,23,214,341,510,246,727,932,998,573,1329,1726,

%T 2195,2742,3373,3515,2516,4094,4155,4911,5006,5830,1746,6857,5352,

%U 4057,7998,8273,9259,10646,1331,12165,12239,884,13822,15623,17574,19681

%N Consider all integer triples (i,j,k), j,k>0, with binomial(i+2, 3) = binomial(j+2, 3) + k^3, ordered by increasing i; sequence gives j values.

%C i values are A054221 and k values are A054223.

%C Up to a(59), which is as far as computed, there is only one unique pair (j,k) associated with each i. - _R. J. Mathar_, Nov 10 2006

%H Bert Dobbelaere, <a href="/A054222/b054222.txt">Table of n, a(n) for n = 0..271</a>

%e binomial(7+2, 3) = 84 = binomial(4+2, 3) + 4^3, so 4 is a term;

%e binomial(8+2, 3) = 120 = binomial(6+2, 3) + 4^3, so 6 is a term.

%t max = 20000; s = {}; Do[k = ((i*(i+1)*(i+2) - j*(j+1)*(j+2))/6)^(1/3); If[IntegerQ[k], Print[j]; AppendTo[s, {i, j}]], {j, 1, max}, {i, j+1, max}]; Sort[s, #1[[1]] < #2[[1]] &][[All, 2]] (* _Jean-François Alcover_, Oct 12 2011 *)

%o (C) #include <stdio.h> #include <limits.h> #include <math.h> unsigned A000578inv(unsigned long long n) { unsigned long long n3 = (unsigned long long)cbrt((double)n) ; for(unsigned long long k= n3-1 ; k <= n3+1 ; k++) if ( k*k*k == n) return k ; return 0 ; } int main(int argc, char *argv[]) { const unsigned long long imax = cbrt((double)ULLONG_MAX)-2. ; for(unsigned i=1; i<imax; i++) { unsigned long long i3 = i*(unsigned long long)(i+1)*(unsigned long long)(i+2) ; for(unsigned j=1 ; j < i ; j++) { unsigned long long k3 = i3- j*(unsigned long long)(j+1)*(unsigned long long)(j+2) ; if( k3 % 6 == 0) { unsigned k=A000578inv(k3/6) ; if ( k ) { printf("%d,",j) ; fflush(stdout) ; } } } } } /* _R. J. Mathar_, Nov 10 2006 */

%Y Cf. A054221, A054223.

%K nice,nonn

%O 0,1

%A Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 04 2000

%E More terms from _R. J. Mathar_, Nov 10 2006