The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241340 Number of partitions p of n such that floor(mean(p)) and ceiling(mean(p)) are parts of p. 5
 0, 1, 2, 3, 4, 5, 7, 8, 11, 15, 18, 22, 37, 36, 50, 73, 89, 100, 152, 161, 249, 290, 330, 413, 646, 666, 803, 1060, 1348, 1473, 2170, 2183, 3003, 3455, 3984, 5318, 6936, 6839, 8494, 10664, 14064, 14322, 19343, 20418, 26417, 32021, 34068, 40921, 56205, 57543 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA a(n) + A241344(n) = A000041(n) for n >=1. EXAMPLE a(6) counts these 8 partitions:  6, 33, 321, 3111, 222, 2211, 21111, 111111. MATHEMATICA z = 30; f[n_] := f[n] = IntegerPartitions[n];     t1 = Table[Count[f[n], p_ /; MemberQ[p, Floor[Mean[p]]] && MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241340 *)     t2 = Table[Count[f[n], p_ /; ! MemberQ[p, Floor[Mean[p]]] && MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241341 *)     t3 = Table[Count[f[n], p_ /; MemberQ[p, Floor[Mean[p]]] && ! MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241342 *)     t4 = Table[Count[f[n], p_ /; ! MemberQ[p, Floor[Mean[p]]] && ! MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241343 *)     t5 = Table[Count[f[n], p_ /; MemberQ[p, Floor[Mean[p]]] || MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241344 *) CROSSREFS Cf. A241341, A241342, A241343, A241344. Sequence in context: A309879 A191166 A238484 * A326667 A293441 A306203 Adjacent sequences:  A241337 A241338 A241339 * A241341 A241342 A241343 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 20 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 09:20 EDT 2020. Contains 334829 sequences. (Running on oeis4.)