The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241206 Greatest n-digit prime having at least n-1 identical digits. 7
 7, 97, 997, 9949, 99991, 999979, 9999991, 99999989, 999999929, 9999999929, 99999999599, 999999999989, 9999999999799, 99999999999959, 999999999999989, 9999999999999199, 99999999999999997, 999999999999999989, 9999999999999999919, 99999999999999999989 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Not the same as A069661 (Smallest n-digit prime with maximum digit sum). For example, A069661(10) = 9899989999 with only n-2 = 8 identical digits. Conjecture: each term consists of at least n-1 digits 9 and no digit 0. - Chai Wah Wu, Dec 10 2015 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..1000 (corrected by Georg Fischer, Jan 20 2019) MAPLE with(numtheory):lst:={}:nn:=30:kk:=0:T:=array(1..nn):U:=array(1..20): for n from 2 to nn do: for i from 1 to n do: T[i]:=9: od: ii:=0: for j from 1 to n while(ii=0)do: for k from 9 by -1 to 0 while(ii=0)do: T[n-j+1]:=k:s:=sum('T[i]*10^(n-i)', 'i'=1..n): if type(s, prime)=true and length(s)=n then ii:=1: kk:=kk+1:U[kk]:=s: else T[n-j+1]:=9: fi: od: od: od : print(U) : MATHEMATICA Table[SelectFirst[Reverse@ Prime@ Range[PrimePi[10^(n - 1)] + 1, PrimePi[10^n - 1]], Max@ DigitCount@ # >= (n - 1) &], {n, 2, 8}] (* WARNING: the following assumes the conjecture is true WARNING *) Table[SelectFirst[Select[Reverse@ Union@ Map[FromDigits, Join @@ Map[Permutations[Append[Table[9, {n - 1}], #]] &, Range[0, 9]]], PrimeQ@ # && IntegerLength@ # == n &], Max@ DigitCount@ # >= (n - 1) &], {n, 2, 20}] (* Michael De Vlieger, Dec 10 2015, Version 10 *) PROG (Python) from __future__ import division from sympy import isprime def A241206(n): for i in range(9, 0, -1): x = i*(10**n-1)//9 for j in range(n-1, -1, -1): for k in range(9-i, -1, -1): y = x + k*(10**j) if isprime(y): return y for j in range(n): for k in range(1, i+1): if j < n-1 or k < i: y = x-k*(10**j) if isprime(y): return y # Chai Wah Wu, Dec 29 2015 CROSSREFS Cf. A069661, A241100. Sequence in context: A146758 A114019 A178007 * A127892 A125590 A068694 Adjacent sequences: A241203 A241204 A241205 * A241207 A241208 A241209 KEYWORD nonn,base AUTHOR Michel Lagneau, Apr 17 2014 EXTENSIONS a(1) added - N. J. A. Sloane, Dec 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 17:08 EDT 2024. Contains 374923 sequences. (Running on oeis4.)