login
A241203
a(n) = floor(5^n/4^(n-1)).
1
5, 6, 7, 9, 12, 15, 19, 23, 29, 37, 46, 58, 72, 90, 113, 142, 177, 222, 277, 346, 433, 542, 677, 847, 1058, 1323, 1654, 2067, 2584, 3231, 4038, 5048, 6310, 7888, 9860, 12325, 15407, 19259, 24074, 30092, 37615, 47019, 58774, 73468, 91835, 114794, 143492, 179366, 224207, 280259
OFFSET
1,1
COMMENTS
a(n) is the curvature (rounded down) of circles inscribed in minor segment where chord length equal to sagitta length starting from a unit circle, the next iterations are nested down at scale factor 4/5. The curvature of circles inscribed in major segment would be A065565: floor((5/4)^n). See illustrations.
LINKS
FORMULA
a(n) = floor(5^n/4^(n-1)), n >= 1.
MATHEMATICA
Floor[4*(5/4)^Range[60]] (* G. C. Greubel, Jun 07 2023 *)
PROG
(PARI) for(n=1, 100, print1(floor(5^n/4^(n-1)), ", "))
(Magma) [Floor(4*(5/4)^n): n in [1..60]]; // G. C. Greubel, Jun 07 2023
(SageMath) [(5^n//4^(n-1)) for n in range(1, 61)] # G. C. Greubel, Jun 07 2023
CROSSREFS
Cf. A065565.
Sequence in context: A229231 A073419 A072956 * A279001 A080708 A047576
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Aug 08 2014
STATUS
approved