login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241200
For the n in A241199, the index of the first of 4 terms in binomial(n,k) that satisfy a quadratic relation.
4
2, 4, 9, 12, 19, 23, 32, 37, 48, 54, 67, 74, 89, 97, 114, 123, 142, 152, 173, 184, 207, 219, 244, 257, 284, 298, 327, 342, 373, 389, 422, 439, 474, 492, 529, 548, 587, 607, 648, 669, 712, 734, 779, 802, 849, 873, 922, 947, 998, 1024, 1077, 1104, 1159, 1187
OFFSET
1,1
COMMENTS
This value of k appears to approach n/2 as n grows larger.
FORMULA
a(n) = (-11-5*(-1)^n-2*(-15+(-1)^n)*n+6*n^2)/16. G.f.: x*(x^2-2)*(x^2+x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Apr 18 2014 and Apr 29 2015
The terms appear to satisfy a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), with initial terms 2, 4, 9, 12, 19. - T. D. Noe, Apr 18 2014
EXAMPLE
Binomial(14,k) = (1, 14, 91, 364, 1001, 2002, 3003, 3432) for k = 0..7. The 4 quadratic terms begin at k = 2.
MATHEMATICA
t = {}; Do[b = Binomial[n, Range[0, n/2]]; d = Differences[b, 3]; If[MemberQ[d, 0], AppendTo[t, Position[d, 0, 1, 1][[1, 1]] - 1]], {n, 3000}]; t
LinearRecurrence[{1, 2, -2, -1, 1}, {2, 4, 9, 12, 19}, 60] (* Harvey P. Dale, Dec 18 2022 *)
PROG
(PARI) Vec(x*(x^2-2)*(x^2+x+1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Apr 29 2015
CROSSREFS
Cf. A008865 (binomial(n,k) has 3 consecutive terms in a linear relation).
Cf. A062730 (3 terms in arithmetic progression in Pascal's triangle).
Cf. A241199 (the values of n).
Sequence in context: A088901 A283147 A111302 * A092530 A154891 A282456
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, Apr 17 2014
STATUS
approved