login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240939
Least number k >= 0 such that n! + k is a perfect power.
1
0, 2, 2, 1, 1, 9, 1, 81, 729, 225, 324, 39169, 82944, 176400, 215296, 3444736, 26167684, 114349225, 255004929, 1158920361, 11638526761, 42128246889, 191052974116, 97216010329, 2430400258225, 1553580508516, 4666092737476, 565986718738441, 2137864362693921, 5112360635841936
OFFSET
1,2
COMMENTS
The only n <= 805 where n! + a(n) is not a square is 3. - Robert Israel, Aug 01 2024
LINKS
MAPLE
f:= proc(n) local v, m, p, r;
m:= infinity;
v:= n!;
p:= 1;
do
p:= nextprime(p);
if 2^p >= m+v then break fi;
r:= ceil(v^(1/p))^p - v;
if r < m then m:= r fi;
od;
m
end proc:
map(f, [$1..50]);
MATHEMATICA
nextPerfectPower[n_] := Min@ Table[(Floor[n^(1/k)] + 1)^k, {k, 2, 1 + Floor@ Log2@ n}]; f[n_] := nextPerfectPower[n!] - n!; f[1] = 0; Array[f, 30] (* Robert G. Wilson v, Aug 04 2014 *)
PROG
(PARI)
a(n)=for(k=0, 10^10, s=n!+k; if(ispower(s)||s==1, return(k)))
n=1; while(n<50, print1(a(n), ", "); n++)
(PARI)
a(n)=for(k=1, n!, if(2^k>n!, kk=k; break)); if(kk==1, return(0)); L=List([]); for(i=2, kk, listinsert(L, ceil(n!^(1/i))^i-n!, 1)); listsort(L); L[1]
vector(40, n, a(n)) \\ faster program
CROSSREFS
Sequence in context: A176602 A322194 A174120 * A016739 A158452 A208929
KEYWORD
nonn
AUTHOR
Derek Orr, Aug 03 2014
EXTENSIONS
a(18) onward from Robert G. Wilson v, Aug 04 2014
STATUS
approved