login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158452
A triangle sequence of permutation Hadamard {1,-1) matrix polynomials: M(d)=Table[If[ m == n, d!/n!, 0], {n, d}, {m, d}]; m(n)=M(2^n)*Hadamard(2^n)
0
1, 2, 2, 1, -1, 24, 24, 24, 24, 12, -12, 12, -12, 4, -4, -4, 4, 1, 1, -1, -1, 40320, 40320, 40320, 40320, 40320, 40320, 40320, 40320, 20160, -20160, -20160, -20160, 20160, 20160, -20160, 20160, 6720, 6720, -6720, -6720, -6720, -6720, 6720, 6720, 1680
OFFSET
0,2
COMMENTS
Row sums are:
{0, -4, -25078, -6495526469206231383391390,
286062680268501848545408513842882834075841335269461890307160415945609971775008
5331640349522681828065666242531221092072696301456782016,...}.
Example matrix:
m(2^2)={{24, 24, 24, 24},
{12, -12, 12, -12},
{4, -4, -4, 4},
{1, 1, -1, -1}}.
FORMULA
M(d)=Table[If[ m == n, d!/n!, 0], {n, d}, {m, d}];
m(n)=M(2^n)*Hadamard(2^n);
out_(n,m)=coefficients(characteristicpolynomial(m(n),x),x)
EXAMPLE
{1, -1},
{-4, -1, 1},
{-18432, -5952, -688, -7, 1},
MATHEMATICA
Needs["Hadamard`"];
M[d_] := Table[If[ m == n, d!/n!, 0], {n, d}, {m, d}];
a = Join[{{{1}}}, Table[M[2^n].If[Hadamard[2^n] == {} && 2^n >= 3, 0, If[2^n == 2, Hadamard[2], Hadamard[2^n][[1]]]], {n, 1, 4}]];
Table[CoefficientList[CharacteristicPolynomial[a[[n]], x], x], {n, 1, Length[ a]}];
Flatten[a]
Table[Apply[Plus, CoefficientList[CharacteristicPolynomial[a[[n]], x], x]], {n, 1, Length[a]}];
CROSSREFS
Sequence in context: A174120 A240939 A016739 * A208929 A039965 A300481
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Mar 19 2009
STATUS
approved