login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240937
Least number k >= 0 such that n! + k is a cube.
2
0, 6, 2, 3, 5, 9, 792, 2555, 10368, 23464, 84888, 1047087, 2483200, 54721675, 228537856, 1394007616, 5090444477, 51286309703, 608427634303, 3260058995493, 11314112766137, 51848285189219, 1034026438223449, 11075640379838488, 181108172062981288, 1566869630866485093
OFFSET
1,2
LINKS
MAPLE
f:= proc(n) local N; N:= n!; ceil(N^(1/3))^3 - N end proc:
seq(f(n), n=1..30); # Robert Israel, Aug 04 2014
MATHEMATICA
f[n_] := Block[{c = n! - 1}, (1 + Floor[c^(1/3)])^3 - c - 1]; Array[f, 26] (* Robert G. Wilson v, Aug 04 2014 *)
PROG
(PARI)
a(n)=for(k=0, 10^10, s=n!+k; if((ispower(s)&&ispower(s)%3==0)||s==1, return(k)))
n=1; while(n<20, print1(a(n), ", "); n++)
(PARI) vector(50, n, ceil(n!^(1/3))^3-n!) \\ faster program
CROSSREFS
Cf. A068869.
Sequence in context: A011362 A090425 A160081 * A178054 A195453 A259543
KEYWORD
nonn
AUTHOR
Derek Orr, Aug 03 2014
EXTENSIONS
a(15) onward from Robert G. Wilson v, Aug 04 2014
STATUS
approved