The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240242 Decimal expansion of Integral_(x=1..c) (log(x)/(1+x))^2 dx, where c = A141251 = e^(LambertW(1/e)+1) corresponds to the maximum of the function. 2
 1, 3, 8, 4, 7, 5, 3, 2, 4, 2, 5, 8, 4, 8, 0, 4, 9, 0, 4, 1, 4, 3, 3, 3, 3, 6, 8, 5, 5, 3, 5, 1, 6, 2, 8, 7, 5, 8, 9, 2, 9, 0, 0, 0, 0, 2, 1, 9, 5, 7, 7, 8, 3, 1, 5, 8, 3, 4, 3, 7, 0, 8, 5, 7, 1, 9, 9, 4, 3, 9, 0, 8, 2, 6, 3, 2, 6, 6, 3, 9, 8, 3, 5, 4, 9, 8, 9, 3, 7, 0, 0, 6, 8, 2, 8, 5, 6, 3, 9, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Jean-François Alcover, Graphics FORMULA A195055 = A013661 + A240242 + A240243. (log(c)/(1+c))^2 = (LambertW(1/e))^2 = 0.0775425... EXAMPLE 0.13847532425848... MATHEMATICA w = ProductLog[1/E]; Pi^2/6 - w - w^2 - 2*Log[1+w]*(1+w) + 2*PolyLog[2, -w] // RealDigits[#, 10, 100]& // First PROG (PARI) (w -> Pi^2/6 - w - w^2 - 2*(1+w)*log(1+w) + 2*polylog(2, -w))(lambertw(exp(-1))) \\ Charles R Greathouse IV, Aug 27 2014 CROSSREFS Cf. A013661, A141251, A195055, A240243. Sequence in context: A021030 A276682 A303215 * A340782 A010628 A225456 Adjacent sequences: A240239 A240240 A240241 * A240243 A240244 A240245 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Apr 03 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 28 08:48 EST 2024. Contains 370394 sequences. (Running on oeis4.)