login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239466
Expansion of (1 - x + x^2 + sqrt(1 + 2*x + 3*x^2 - 2*x^3 + x^4)) / 2 in powers of x.
1
1, 0, 1, -1, 1, 0, -2, 4, -3, -5, 20, -29, 1, 94, -221, 191, 327, -1454, 2282, -162, -8002, 19902, -18275, -30505, 143511, -234364, 24437, 841723, -2164873, 2069014, 3325410, -16315410, 27375369, -3714435, -98829168, 260605269, -257026289, -395719442
OFFSET
0,7
LINKS
FORMULA
G.f.: 1 - x + x^2 + x / (1 - x + x^2 + x / (1 - x + x^2 + x / ...)). (continued fraction convergence is one power series term per iteration).
G.f.: 1 + x^2 / (1 + x / (1 + x^2 / (1 + x / ...))). (continued fraction convergence is three power series terms per iteration).
a(n) = - A129509(n) if n>2.
HANKEL transform is period 8 sequence A112299(n+5) = [1, 1, -1, 0, 1, -1, -1, 0, ...].
HANKEL transform of a(n+1) is period 8 sequence -A112299(n+4) = [0, -1, -1, 1, 0, -1, 1, 1, ...].
D-finite with recurrence: n*a(n) +(2*n-3)*a(n-1) +3*(n-3)*a(n-2) +(-2*n+9)*a(n-3) +(n-6)*a(n-4)=0. - R. J. Mathar, Jan 25 2020
EXAMPLE
G.f. = 1 + x^2 - x^3 + x^4 - 2*x^6 + 4*x^7 - 3*x^8 - 5*x^9 + 20*x^10 + ...
MATHEMATICA
CoefficientList[Series[(1-x+x^2 +Sqrt[1+2*x+3*x^2-2*x^3+x^4])/2, {x, 0, 50}], x] (* G. C. Greubel, Aug 08 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( (1 - x + x^2 + sqrt(1 + 2*x + 3*x^2 - 2*x^3 + x^4 + x * O(x^n))) / 2, n))};
(PARI) {a(n) = my(A = 1 + O(x)); for(k=1, ceil(n / 3), A = 1 + x^2 / (1 + x / A)); polcoeff(A, n)};
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x+x^2 +Sqrt(1+2*x+3*x^2-2*x^3+x^4))/2)); // G. C. Greubel, Aug 08 2018
CROSSREFS
Sequence in context: A072937 A343312 A256640 * A129509 A375907 A375365
KEYWORD
sign
AUTHOR
Michael Somos, Mar 19 2014
STATUS
approved