login
A375365
Expansion of 1/( (1 + x)^2 * (1 - x^2*(1 + x)^3) ).
1
1, -2, 4, -3, 6, -2, 14, 3, 32, 35, 92, 142, 309, 541, 1061, 1970, 3770, 7067, 13423, 25328, 47925, 90546, 171268, 323704, 612034, 1157045, 2187523, 4135499, 7818493, 14781207, 27944635, 52830674, 99879267, 188826659, 356986436, 674901081, 1275934925, 2412219595
OFFSET
0,2
FORMULA
a(n) = -2*a(n-1) + 5*a(n-3) + 10*a(n-4) + 10*a(n-5) + 5*a(n-6) + a(n-7).
a(n) = Sum_{k=0..floor(n/2)} binomial(3*k-2,n-2*k).
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(1/((1+x)^2*(1-x^2*(1+x)^3)))
(PARI) a(n) = sum(k=0, n\2, binomial(3*k-2, n-2*k));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 13 2024
STATUS
approved