login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375368
Decimal expansion of zeta'(2)/(2*Pi^2) + log(2*Pi)/6 - gamma/12.
1
2, 1, 0, 7, 1, 4, 7, 8, 9, 5, 6, 8, 5, 5, 2, 1, 0, 8, 3, 4, 2, 9, 1, 1, 8, 7, 4, 6, 2, 6, 6, 9, 4, 8, 4, 3, 8, 3, 3, 3, 2, 9, 0, 2, 3, 1, 5, 0, 3, 5, 6, 5, 8, 9, 4, 0, 8, 7, 2, 0, 1, 3, 0, 5, 5, 0, 6, 8, 9, 8, 1, 4, 9, 6, 3, 7, 1, 9, 6, 9, 2, 7, 5, 4, 5, 1, 3, 2, 1
OFFSET
0,1
COMMENTS
zeta'(2) = -0.9375.. is the first derivative of the zeta function (see A073002). Gamma is A001620.
LINKS
Olivier Espinosa and Victor H. Moll, On some integrals involving the Hurwitz zeta function: Part 1, Raman. J. 6 (2002) 159-188, Example 6.4.
FORMULA
Equals Integral_{x=0..1} x* log(Gamma(x)) dx.
Equals log(A367842). - Hugo Pfoertner, Aug 19 2024
EXAMPLE
0.21071478956855210834291187462669484383332902315035...
MAPLE
Zeta(1, 2)/2/Pi^2+log(2*Pi)/6-gamma/12 ; evalf(%) ;
MATHEMATICA
RealDigits[Zeta'[2] / (2*Pi^2) + Log[2*Pi] / 6 - EulerGamma / 12, 10, 120][[1]] (* Amiram Eldar, Aug 19 2024 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Aug 13 2024
STATUS
approved