login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 - x + x^2 + sqrt(1 + 2*x + 3*x^2 - 2*x^3 + x^4)) / 2 in powers of x.
1

%I #11 Sep 08 2022 08:46:07

%S 1,0,1,-1,1,0,-2,4,-3,-5,20,-29,1,94,-221,191,327,-1454,2282,-162,

%T -8002,19902,-18275,-30505,143511,-234364,24437,841723,-2164873,

%U 2069014,3325410,-16315410,27375369,-3714435,-98829168,260605269,-257026289,-395719442

%N Expansion of (1 - x + x^2 + sqrt(1 + 2*x + 3*x^2 - 2*x^3 + x^4)) / 2 in powers of x.

%H G. C. Greubel, <a href="/A239466/b239466.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: 1 - x + x^2 + x / (1 - x + x^2 + x / (1 - x + x^2 + x / ...)). (continued fraction convergence is one power series term per iteration).

%F G.f.: 1 + x^2 / (1 + x / (1 + x^2 / (1 + x / ...))). (continued fraction convergence is three power series terms per iteration).

%F a(n) = - A129509(n) if n>2.

%F HANKEL transform is period 8 sequence A112299(n+5) = [1, 1, -1, 0, 1, -1, -1, 0, ...].

%F HANKEL transform of a(n+1) is period 8 sequence -A112299(n+4) = [0, -1, -1, 1, 0, -1, 1, 1, ...].

%F D-finite with recurrence: n*a(n) +(2*n-3)*a(n-1) +3*(n-3)*a(n-2) +(-2*n+9)*a(n-3) +(n-6)*a(n-4)=0. - _R. J. Mathar_, Jan 25 2020

%e G.f. = 1 + x^2 - x^3 + x^4 - 2*x^6 + 4*x^7 - 3*x^8 - 5*x^9 + 20*x^10 + ...

%t CoefficientList[Series[(1-x+x^2 +Sqrt[1+2*x+3*x^2-2*x^3+x^4])/2, {x, 0, 50}], x] (* _G. C. Greubel_, Aug 08 2018 *)

%o (PARI) {a(n) = if( n<0, 0, polcoeff( (1 - x + x^2 + sqrt(1 + 2*x + 3*x^2 - 2*x^3 + x^4 + x * O(x^n))) / 2, n))};

%o (PARI) {a(n) = my(A = 1 + O(x)); for(k=1, ceil(n / 3), A = 1 + x^2 / (1 + x / A)); polcoeff(A, n)};

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x+x^2 +Sqrt(1+2*x+3*x^2-2*x^3+x^4))/2)); // _G. C. Greubel_, Aug 08 2018

%Y Cf. A112299, A129509.

%K sign

%O 0,7

%A _Michael Somos_, Mar 19 2014