The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239242 Number of partitions of n into distinct parts for which (number of odd parts) > (number of even parts). 7
 0, 1, 0, 1, 1, 1, 2, 1, 4, 2, 6, 3, 9, 5, 12, 9, 17, 14, 22, 22, 29, 33, 38, 48, 50, 68, 65, 95, 86, 128, 113, 172, 149, 226, 197, 295, 260, 379, 342, 485, 449, 613, 587, 773, 762, 967, 987, 1206, 1269, 1497, 1623, 1855, 2063, 2289, 2610, 2823, 3280, 3471 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS a(n) = Sum_{k>=1} A240021(n,k). - Alois P. Heinz, Apr 02 2014 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA a(n) + A239240(n) = A000009(n) for n >=1. EXAMPLE a(8) = 4 counts these partitions:  71, 53, 521, 431. MAPLE b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,      `if`(n=0, `if`(t>0, 1, 0 ), b(n, i-1, t)+`if`(i>n, 0,       b(n-i, i-1, t+`if`(irem(i, 2)=1, 1, -1)))))     end: a:= n-> b(n\$2, 0): seq(a(n), n=0..60);  # Alois P. Heinz, Mar 15 2014 MATHEMATICA z = 55; p[n_] := p[n] = IntegerPartitions[n]; d[u_] := d[u] = DeleteDuplicates[u]; g[u_] := g[u] = Length[u]; Table[g[Select[Select[p[n], d[#] == # &], Count[#, _?OddQ] < Count[#, _?EvenQ] &]], {n, 0, z}] (* A239239 *) Table[g[Select[Select[p[n], d[#] == # &], Count[#, _?OddQ] <= Count[#, _?EvenQ] &]], {n, 0, z}] (* A239240 *) Table[g[Select[Select[p[n], d[#] == # &], Count[#, _?OddQ] == Count[#, _?EvenQ] &]], {n, 0, z}] (* A239241 *) Table[g[Select[Select[p[n], d[#] == # &], Count[#, _?OddQ] > Count[#, _?EvenQ] &]], {n, 0, z}] (* A239242 *) Table[g[Select[Select[p[n], d[#] == # &], Count[#, _?OddQ] >= Count[#, _?EvenQ] &]], {n, 0, z}] (* A239243 *) (* Peter J. C. Moses, Mar 10 2014 *) b[n_, i_, t_] := b[n, i, t] = If[n>i*(i+1)/2, 0, If[n==0, If[t>0, 1, 0], b[n, i-1, t]+If[i>n, 0, b[n-i, i-1, t+If[Mod[i, 2]==1, 1, -1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *) CROSSREFS Cf. A239239, A239240, A239241, A239243, A000009. Sequence in context: A107130 A194747 A065423 * A340621 A008733 A244515 Adjacent sequences:  A239239 A239240 A239241 * A239243 A239244 A239245 KEYWORD nonn,easy AUTHOR Clark Kimberling, Mar 13 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 1 00:13 EDT 2021. Contains 346377 sequences. (Running on oeis4.)